
Dong ZY, Tang CZ, Wang JC et al. Optimistic transaction processing in deterministic database. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 35(2): 382–394 Mar. 2020. DOI 10.1007/s11390-020-9700-5

Optimistic Transaction Processing in Deterministic Database

Zhi-Yuan Dong, Chu-Zhe Tang, Jia-Chen Wang, Zhao-Guo Wang∗

Hai-Bo Chen, Distinguished Member, CCF, Senior Member, ACM, IEEE, and
Bin-Yu Zang, Distinguished Member, CCF, Member, ACM

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: dongzy829@gmail.com; {t.chuzhe, wangjc, zhaoguowang, haibochen, byzang}@sjtu.edu.cn

Received May 8, 2019; revised September 2, 2019.

Abstract Deterministic databases can improve the performance of distributed workload by eliminating the distributed

commit protocol and reducing the contention cost. Unfortunately, the current deterministic scheme does not consider the

performance scalability within a single machine. In this paper, we describe a scalable deterministic concurrency control,

Deterministic and Optimistic Concurrency Control (DOCC), which is able to scale the performance both within a single

node and across multiple nodes. The performance improvement comes from enforcing the determinism lazily and avoiding

read-only transaction blocking the execution. The evaluation shows that DOCC achieves 8x performance improvement than

the popular deterministic database system, Calvin.

Keywords deterministic database, concurrency control, scalability

1 Introduction

Deterministic databases [1–3] execute transactions in

a predetermined order. This makes the systems can

eschew the distributed protocol which is a major per-

formance factor of distributed databases systems, and

have promising performance even under high contention

workload as all transactions are ordered in advance.

Calvin [1] is the most popular deterministic database

and dominates most deterministic database systems

design [3–5]. It first puts all received transactions in a

serial order. Then, each machine executes the transac-

tions following the predetermined order.

To enforce the order, each machine has a scheduler

thread to constrain the transaction execution. It grants

the locks to requesting transactions in the strict prede-

termined order. As a result, the transactions will deter-

ministically access the data. However, since the schedu-

ler thread grants the locks sequentially, this will serial-

ize the execution of all conflicting transactions even if

there are parallelism opportunities. For example, consi-

dering transaction T1 updates A and C, while transac-

tion T2 updates B and C, even they have conflicting

access on C, they still can concurrently access records

A and B. But, Calvin will first grant the locks of both

A and C to T1, and T2 cannot start execution until T1

commits.

To address the scalability problem in Calvin, we

propose a new protocol, called Deterministic and Op-

timistic Concurrency Control (DOCC). It can unleash

potential parallelism opportunities with the determin-

istic guarantee. DOCC’s key to solving the scalability

issue in Calvin is to enforce the predetermined order

lazily. In particular, DOCC executes the transactions

concurrently and constrains the validation order of de-

pendent transactions. In the above example, under

DOCC, T1 and T2 can access records of A and B con-

currently. However, T2 cannot perform validation until

T1 commits. Furthermore, DOCC can also avoid read-

only transaction blocking execution with snapshots.

Meanwhile, there are also some studies targeting to

improve the scalability of deterministic databases, like

Lazy Evaluation [3], VLL [4] and BOHM [5]. However,

previous work (including Calvin) must either know the

read/write sets or statically analyze the transactions

in advance. Relatively, DOCC does not need any pre-

Regular Paper

Special Section of ChinaSys 2019
∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-9700-5

Zhi-Yuan Dong et al.: Optimistic Transaction Processing in Deterministic Database 383

knowledge of transactions due to optimistic execution

and lazy scheduling, which improves the generality of

deterministic databases.

The following are our contributions.

• We propose DOCC. It improves Calvin’s scala-

bility by unleashing potential parallelism opportunities.

• We propose an optimization which prevents read-

only transactions from blocking the execution.

• We provide a retry strategy which can reuse pre-

vious execution results.

• We implement a prototype of DOCC and the

experiment shows DOCC can outperform Calvin with

4.31x–8.46x in TPC-C benchmark.

2 Motivation and Approach

Deterministic database is able to eliminate the dis-

tributed commit protocol and reduce the contention in

the workload by executing the transactions in a prede-

termined order [1]. However, it also has drawbacks that

its performance cannot scale up in a single machine,

and the supported transaction types are restricted. In

this section, we will describe the problems of the deter-

ministic database in detail by studying a popular de-

terministic database system, Calvin. Then, we exploit

the potential opportunities and ideas for improvement.

2.1 Calvin and Its Scalability Issues

Calvin is a layered system. In the sequencing layer,

it generates a dependency graph according to the global

arriving order of the received transactions. In Calvin,

the sequencing service is distributed for scalability,

which is composed of multiple sequencers. Then, each

sequencer broadcasts the transactions and dependency

graph to the scheduler on each machine (scheduling

layer). Each scheduler aggregates the requests from

the sequencers and enforces the transactions to execute

in the dependent order determined in the sequencing

layer.

Before demonstrating the issues in Calvin, we need

to describe the scheduling layer in more details. Each

machine has a scheduling thread which is used to ar-

range the transactions’ execution order by granting the

locks deterministically. Specifically, the scheduler an-

alyzes the read/write set of all received transactions,

and then grants the locks to transactions strictly in the

order determined by the sequencer. Lastly, it assigns

these transactions to multiple worker threads for para-

llel execution.

Fig.1(a) gives an example, transaction T1 reads

records A and C, while transaction T2 updates B

and C. Consider Calvin receives these two transac-

tions concurrently and serializes T1 before T2 at the

sequencer layer. After the scheduler receives these two

transactions from the sequencer, it first analyzes T1’s

Worker 1Scheduler

Lw(C) Fails

T2 Is Pendng

Worker 2

T1 Commits

T2 Commits

Lw(C) Succeeds

T2 Can Run

Requests of
Requests of

T1,T2 T1,T2
T1,T2 T1: Lr(A)

T1: Lr(C)

T2: Lw(B)

T2: Lw(C)

T1: U(A)

T1: U(C)

T2: Lw(C)

T2: U(B)

T2: U(C)

T1: R(A)

T1: R(C)

T2: W(B)

T2: W(C)

Worker 1 Worker 2 Worker 1 Worker 2

(T1 Is Read-Only)

T2 Need Not Wait for T1

Requests of

T1: R(A)

T1: R(C)

T1: Valid

T1: Commit

T2: W(B)

T2: W(C)

T2: Wait (T1)

T2: Valid

T2: Commit

T1: R(A)

T1: R(C)

T2: W(B)

T2: W(C)

T1: Valid

T1: Commit

T2: Valid

T2: Commit

(b)(a) (c)

Fig.1. (a) Example of Calvin’s deterministic locking. (b) Example of DOCC. (c) Example of DOCC with snapshot. Lr , Lw, U , R,
and W mean “acquire read lock”, “lock write lock ”, “unlock”, “read”, and “write” respectively.

384 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

read/write sets and grants locks of A and C to T1.

When it tries to grant C’s lock to T2, it will find the

lock has been already held by T1 and suspend T2 until

T1 commits.

Fig.2 shows that the scheduler on each machine lim-

its the performance scalability within the single node.

We run TPC-C benchmark with Calvin and evaluate

the performance of the single node in the cluster. The

performance cannot scale after four cores because of the

sequential scheduling strategy.

 0

 25

 50

 75

 100

 125

 150

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t

(k
p
s)

Number of Workers

Fig.2. Calvin’s multi-core scalability on 24-core machine in TPC-
C standard-mix benchmark. Each worker thread is dedicated to
one core. Four cores are responsible for sequencing and schedul-
ing transactions.

2.2 DOCC’s Approach

When using Calvin’s deterministic scheduling,

many opportunities for parallelism are lost even for

conflicting transactions. Considering the above exam-

ple, T1 and T2 can access A and B concurrently, and

only need to be serialized on the access of C. However,

Calvin will make these two transactions’ execution se-

quential. To exploit the potential parallelism, we pro-

pose a new deterministic concurrency control, DOCC,

which has scalable performance in a single node or

across multiple nodes. Below, we discuss the main idea

of DOCC.

Enforcing the Deterministic Order Lazily. After re-

ceiving transactions from the sequencers, DOCC di-

rectly executes all transactions concurrently and vali-

dates the execution results in a deterministic manner.

To be more specific, each record is associated with a ver-

sion number which indicates the last transaction which

updates it. During the execution, the transaction reads

the record content and its version into its local read

set, and buffers the updates in its write set. Then, the

transaction needs to wait for all its dependent transac-

tions decided by the sequencer to commit before the val-

idation. DOCC performs the validation by comparing

the current version with the version number buffered

in the read set. Last, it will commit all its updates in

the write set. Fig.1(b) shows how DOCC arranges the

parallel execution of T1 and T2 in Fig.1(a). After receiv-

ing T1 and T2 from the sequencer, the scheduler directly

executes T1 and T2 concurrently. During the execution,

T1 and T2 buffer the record version or the updates in

their read/write sets. Since T1 is serialized before T2 by

the sequencer, DOCC will block T2’s validation phase

until T1 finishes.

Avoiding Read-Only Transactions Blocking the Exe-

cution. For the above algorithms, a transaction T can-

not perform validation until all dependent transactions

commit. This limits the scalability. However, if T is se-

rialized after a read-only transaction Tr, then it is not

necessary to wait for Tr to commit before its valida-

tion. Based on this observation, DOCC leverages the

multiple version design to avoid read-only transaction

blocking the execution. When a transaction commits, it

creates a new version for the updated record instead of

in-place update. This can avoid overwriting the content

of records which may be still needed by previous read-

only transactions. Considering the above example, T1

is a read-only transaction which cannot invalidate T2’s

execution. Thus T2 does not need to wait for T1’s fin-

ish. When T2 commits, it creates a new version on both

records B and C, since T1 still needs the old version.

3 DOCC

This section describes how transactions are exe-

cuted in DOCC. The general idea is to execute trans-

actions optimistically and use a sequential validation

mechanism to guarantee the determinism — the exe-

cution with DOCC should be serializable to the serial

execution in the predetermined order. In the rest of

the section, we will first present the record layout and

the basic algorithm of DOCC (Subsection 3.1). Then

we introduce two novel optimizations: 1) eliminat-

ing unnecessary waits with snapshots (Subsection 3.2)

and 2) speeding up retry with data prefetching (Sub-

section 3.3), and present how we efficiently perform

garbage collection to support these two optimizations

(Subsection 3.4). Then we prove the correctness of

DOCC (Subsection 3.5). Lastly but certainly not least

we discuss the difference between DOCC and existing

concurrency controls and why DOCC can improve the

generality of deterministic databases (Subsection 3.6).

Zhi-Yuan Dong et al.: Optimistic Transaction Processing in Deterministic Database 385

3.1 Basic Algorithm

The basic algorithm (Algorithm 1) of DOCC in-

cludes four phases and bears resemblance to original

optimistic concurrency control (OCC) protocol except

for the waiting phase that guarantees the serializabil-

ity to a predetermined order. The four phases are as

follows.

• Execution phase executes transactions opti-

misticly and tracks necessary record metadata.

• Waiting phase stalls transaction validation until

its dependent transaction has committed.

• Validation phase validates the execution result

and aborts the transaction upon the failure of valida-

tion.

• Commit phase commits the execution result and

sets the transaction state to Committed.

S

A

Before going further into detail, we briefly intro-

duce the record layout and notations used throughout

this section. In DOCC , a record consists of 1) a cur-

rent version number and 2) a data pointer to the ac-

tual data. We use TN to denote the N -th transaction

in the predetermined order, and TN-dep to denote TN ’s

dependent transaction. TN ’s validation phase should

wait until TN-dep has committed to that the execution

of the two transactions follows the predetermined or-

der. Usually TN-dep equals TN−1, but with snapshots

(Subsection 3.2) TN-dep can be an earlier transaction

in the predetermined order. For simplicity, we use the

same N as the transaction ID of TN .

Execution Phase. During the execution, for each

operation within TN , Algorithm 1 first fetches the

record by the corresponding key (line 3). Then, ac-

cording to the operation type, either the original data

or the new data is stored into the local buffer (lines 4–

7). Finally, the version number of this record is stored

for future validation (line 8).

Waiting Phase. After TN ’s execution phase, Algo-

rithm 1 waits until the dependent transaction TN-dep
has been committed before going to the validation

phase (lines 10 and 11). Therefore, TN is able to ob-

serve the latest updates from the previous transactions

in its validation phase.

Validation Phase. Algorithm 1 validates that TN

has read all the latest records by comparing the ver-

sion numbers stored during the execution phase with

the record’s current version number (line 14). When

the validation fails, Algorithm 1 aborts and retries TN

immediately (line 15). To ensure determinism, when

TN is aborted, subsequent transactions should keep on

waiting until the retry has successfully committed. The

details about abort and retry will be described in Sub-

section 3.3.

Commit Phase. Algorithm 1 installs the buffered

updates of TN to the actual records with new version

numbers (lines 17–20) and marks the transaction state

as Committed (line 21). After TN has been committed,

its subsequent transactions can then proceed to the vali-

dation phase. Since the waiting phase guarantees there

is only one transaction running the validation phase

and the commit phase at a time, Algorithm 1 does not

acquire any write locks.

3.2 Eliminating Unnecessary Waits with

Snapshots

To eliminate unnecessary waits while respecting the

predetermined order, we introduce snapshots to DOCC

(Algorithm 2). In Algorithm 1, assuming TN-dep is a

read-only transaction, TN always spins in the waiting

phase until TN-dep has committed, even if TN-dep does

not update any records that TN needs. This presents an

opportunity for further optimizing DOCC performance

by eliminating such unnecessary waits. However, we

cannot simply skip the waiting phase of TN because

then TN might commit during TN-dep’s execution phase

and accidentally overwrite the records with a newer ver-

386 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

sion that TN-dep should not read, thereby the determin-

ism is violated.

To execute transactions with snapshots, we keep the

current version of records and previous versions that

would have been overwritten in Algorithm 1. We fur-

ther include a prev pointer in the record layout, which

points to the record’s latest version, so that all the ver-

sions are chained together (line 18). Garbage collection

for the stale versions will be discussed in Subsection 3.4.

To eliminate unnecessary waits, we set TN ’s depen-

dent transaction TN-dep to the last read-write transac-

tion prior to TN , rather than TN−1. In this way, read-

only transactions will not block subsequent transactions

while read-write transactions can still observe the latest

updates from previous read-write transactions during

the validation phase (line 10).

To ensure determinism, transaction TN will read the

latest version of records visible to TN from existing

snapshots (line 3). During the validation phase, TN

will reread the snapshots to ensure that the versions

TN has read are still the latest ones (line 12).

Fig.3 illustrates how this optimization works. In

this example, we have three transactions T1, T2, T3 and

the record R with initial value R0. T1 and T3 read and

update record R to R1 and R3 respectively while T2

only reads record R. Assuming we have two worker

threads, in the beginning, T1 and T2 will both enter

the execution phase and read R0. Since T2 depends

on T1, it will wait for T1 to commit and set record

R to R1 before entering the validation phase. During

the validation phase, T2 will find that it should read

the value R1 instead of R0; therefore Algorithm 2 will

abort and retry T2. At the same time T3 starts to ex-

ecute and commit after setting record R to R3. Since

we have snapshots to track old versions of records, the

execution of T3 will not affect the retry of T2.

Snapshot
Read R0

Validation

Fails

snapshot_read

Retry

T1 T2 T3

Snapshot
Read R0

Commit R1

Commit R3

Snapshot
Read R1

R1

Fig.3. Example showing how multi-version snapshot works for
read-only transactions.

3.3 Speeding up Retry with Data Prefetching

To speed up transaction retry and minimize the

blocking cost, we introduce an indirection-based data

prefetching mechanism. In DOCC, if transaction T

fails during the validation phase, it will be aborted

and retried immediately. Such retry hurts DOCC per-

formance significantly since any transactions that de-

pend on T , either directly or indirectly, will have to

wait until T has successfully committed for determin-

ism. However, in many online transactional process-

ing (OLTP) workloads, transaction execution time is

largely spent on data accessing, e.g., traversing index

structures. Based on this observation, we propose to

use another layer of indirection to prefetch data during

retry, effectively eliminating most of the data accessing

cost.

To eliminate data accessing cost, we need to be able

to access the records directly during retry. If we simply

track the addresses of records during the first aborted

execution, we can easily run into segmentation faults

since records might be deleted at retry time. Moreover,

to be able to find the latest version from a potentially

old record’s address, we need next pointers in the record

Zhi-Yuan Dong et al.: Optimistic Transaction Processing in Deterministic Database 387

layout and perform a time-consuming traversal, due to

the number of random memory accesses.

To address these issues, we propose 1) to use logical

deletion with special empty records and 2) to index an-

other data structure called record placeholders, which

contains nothing but a pointer to the latest record, in-

stead of directly indexing the records. As Fig.4 shows,

all versions of the same records, including versions for

logical deletion, are linked after the record placeholder

and the record placeholder will not be deleted directly

by any other transactions. In this way, during retry,

transactions can directly access the latest version of

records, by accessing the record placeholders gathered

in the first aborted execution. The actual deletion

operation is performed by garbage collection (Subsec-

tion 3.4).

After B-Tree Leaf
Nodes Change...When R Is Inserted

R s Placeholder

Txn Accessing R

Txn Records the Memory

Address of R s Placeholder

B-Tree B-Tree

R8 R5 R...

Fig.4. Example of placeholder. Txn means a transaction.

Algorithm 3 is a simplified algorithm for transac-

tion retry in DOCC with data prefetching optimization.

When retrying a transaction T , we do not need the

waiting phase or the validation phase anymore, since

all the transactions that can update records have al-

ready committed before retry. Therefore T is able to

observe the latest updates.

3.4 Garbage Collection

By introducing snapshots and logical deletes,

garbage collection (GC) is required to reclaim memory

occupied by out-of-date records. In DOCC, garbage

collection is divided into two parts: 1) trimming the

version chain of each record and 2) removing unused

record placeholders. Meanwhile, a background thread

is dedicated for GC.

3.4.1 Trimming the Version Chain of Each Record

To trim off the old versions that will never be used

again, DOCC maintains the smallest transaction ID

among current running transactions, TIDearlist. Each

time when the GC thread tries to trim the record’s ver-

sion chain, it starts by finding the first version Ri whose

version ID is smaller than or equal to TIDearlist as the

reclamation starting point, and then the GC thread re-

cursively reclaims memory starting from version Ri’s

prev pointer.

Fig.5 illustrates how this GC procedure takes ac-

tion. Considering that we have record R with three

versions R1, R2 and R4 and currently TIDearlist is 3.

The GC thread runs in the background scanning the

version chain of the record R and finds that the starting

point of reclamation is R2. Then the GC thread will

start reclaiming memory from R2’s prev pointer and

therefore the stale version R1 is reclaimed. It is im-

portant that GC thread leaves the reclamation starting

point (R2 in this example) intact since that version is

still visible to running transaction (T3 in this example).

Snapshot Read

GC

R4 R2 R1

R s
Placeholder

Read-Only
T3

TIDearlist/

Fig. 5. Example explaining how record versions are garbage-
collected.

3.4.2 Removing Unused Record Placeholders

The GC procedure described above can effectively

remove stale versions, but it fails to remove the unused

record placeholders, whose latest version is a logical

delete, from the index structure, since it will preserve

388 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

at least one version of the record, the reclamation start-

ing point. On the other hand, it is necessary to remove

these record placeholders as well; otherwise the system

will eventually contain too many logical deleted records

and suffer from severe performance degradation.

We cannot directly reclaim unused record placehold-

ers as any running transaction can potentially be ac-

cessing them and concurrent reclamation will, there-

fore, cause invalid memory accesses. One way to safely

remove them is to add a reference counter to each record

placeholder and reclaim memory when there is no ac-

cess. However, this approach introduces a significant

amount of synchronization overhead [6].

We use a read-copy-update (RCU) style reclamation

mechanism [7–10] to safely remove unused record place-

holders while maintaining good performance. For each

unused record placeholder, we mark it as “sealed” along

with TIDGC, the largest transaction ID among current

running transactions. These record placeholders will no

longer be modified and will be reclaimed after transac-

tion TTIDGC
has committed. If a running transaction

attempts to update a new version of the record, it will

create a new record placeholder and store the new ver-

sion as the latest one. Our index structure makes sure

that the “sealed” record placeholders do not conflict

with new ones.

3.5 Correctness

In this subsection, we present a proof sketch of the

correctness that DOCC satisfies deterministic schedul-

ing. Given transactions T1–TN , the execution with

DOCC is serializable to executing T1–TN serially, de-

noted by T1 → T2 → ... → TN in the serialization

graph.

We prove this by contradiction. We assume there

are two transactions Ti and Tj (i < j), and they con-

flict with each other. We also assume Tj → Ti, i.e., Ti

commits after Tj.

If Ti is a read-write transaction, note that DOCC

ensures that 1) if Ti is validating or committing, Ti’s

subsequent transactions are uncommitted; 2) uncom-

mitted transaction’s updates are invisible to other

transactions. If Ti is a read-only transaction, snapshot

ensures that Ti uses i as a version to read a consistent

snapshot whose version is smaller than i. Thus Ti will

never observe Tj ’s update or commit after Tj .

At the same time, DOCC also guarantees that if Tj

is validating and committing, T1–Tj−1 have all commit-

ted their updates. Thus Tj must observe Ti’s updates

and commit after Ti.

Therefore Tj → Ti cannot exist, and hence DOCC

guarantees the execution is serializable to execute T1–

TN serially.

3.6 Discussion

Comparing DOCC with Optimistic Concurrency

Control (OCC) & Multi-Version Concurrency Control

(MVCC). Inspired by OCC, DOCC allows transac-

tions to execute optimistically without coordination

and lazily enforces the correctness. Inspired by MVCC,

DOCC prevents read-only transactions from blocking

execution. Comparing these concurrency controls, the

major differences are as follows.

• DOCC must follow the predetermined order in

deterministic databases and has an extra waiting phase

to guarantee that only one transaction can enter the

validation phase and the commit phase on each node.

• DOCC does not need to acquire locks for write set

as there is only one writer in the validation phase and

the commit phase each time.

• DOCC directly uses the transaction ID which rep-

resents the predetermined order as the version num-

ber (or timestamp), avoiding costly or complex version

number management.

Improving the Generality. For existing determinis-

tic databases [1, 3–5], they schedule transactions before

execution; therefore they must know the read/write

sets or statically analyze the transactions in advance.

Relatively, like OCC, DOCC does not require the pre-

knowledge of read/write sets as it can determine the

read/write sets during execution. In addition, DOCC

does not involve any static analysis to chop the trans-

actions. Therefore, DOCC can relax the transaction

constraint of previous work and improve the generality

of deterministic databases.

4 Evaluation

In this section, we want to answer the following

questions with our evaluation.

• Can DOCC’s single-node performance outperform

Calvin’s and non-deterministic database’s?

• Can DOCC’s multi-node performance outperform

Calvin’s and non-deterministic database’s?

• How much does DOCC’s optimization improve

performance?

4.1 Experimental Setup

Testbed. We use a rack-scale cluster with eight

machines for all of our experiments. Each machine

Zhi-Yuan Dong et al.: Optimistic Transaction Processing in Deterministic Database 389

is equipped with two 12-core Intel Xeon E5-2650 v4

processors and 128 GB of DRAM. Each machine runs

Ubuntu 16.04.

Systems. As Calvin’s source code 1○ is not well op-

timized, we optimize Calvin with several optimizations

as our baseline 2○. The optimizations include but are

not limited to applying fast in-memory index structure,

eliminating messaging serialization overhead and using

encoded eight-byte word instead of a string as key.

In the following subsections (Subsection 4.1–

Subsection 4.3), we refer Calvin to our optimized ver-

sion of Calvin. For an apple-to-apple comparison, we

then implement DOCC atop of Calvin, thereby DOCC

and Calvin are based on the same codebase.

In the following experiments, we show the perfor-

mance comparison among four databases.

• Calvin: highly optimized version of Calvin.

• DOCC: DOCC with snapshot and prefetching op-

timizations by default.

• DrTM+R: a high-performance non-deterministic

database [11] based on OCC without logging enabled.

• Lazy evaluation: a high-performance determinis-

tic database executing transactions according to depen-

dency graph [3].

For the above four systems, the worker threads are

pinned to one core. We do not use networked clients.

Instead, there are dedicated transaction generators on

each node issuing transactions.

As lazy evaluation is a single-node database, we can-

not evaluate its scalability in distributed setting (Sub-

section 4.3).

TPC-C Benchmark. The TPC-C benchmark sim-

ulates a warehouse-centric eCommerce order process-

ing system. TPC-C benchmark consists of five diffe-

rent transactions. Our implementation directly follows

TPC-C’s specification 3○. By partitioning warehouses,

transactions in TPC-C can be changed into one-shot

transactions [12].

Contention Levels. Two contention levels are used

in following evaluations.

• Low Contention. The number of warehouses main-

tained on each node is equal to the number of worker

threads per node. The warehouses are accessed evenly.

• High Contention. Only one warehouse is main-

tained on each node. The warehouses are accessed

evenly.

4.2 Single-Node Performance

Because deterministic databases use four cores to

sequence and schedule transactions, we use at most 20

workers per machine for all four systems for single-node

evaluation. The comparative relation of four databases’

performance will not change if we add four more work-

ers to DrTM+R.

Low Contention. Fig.6 shows the TPC-C bench-

mark performance of four databases under low con-

tention.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t

(k
p
s)

Number of Workers

DOCC
Calvin
DrTM+R
Lazy Evaluation

Fig.6. Single-node throughput of TPC-C benchmark under low
contention.

When there is only one worker, Calvin suffers from

unnecessary locking overhead, as the execution of trans-

actions and locking are serial. Meanwhile, DOCC and

DrTM+R handle transactions analogously in a single

worker. Therefore, DOCC’s single-thread throughput

is 132% higher than Calvin’s and similar to DrTM+R’s.

Since Calvin’s throughput is limited by the deter-

ministic locking, the maximum throughput of Calvin

is 119 kps (1 000 transactions per second) when eight

workers are available. With the number of workers in-

creasing to 20, DOCC reaches its throughput at 487

kps, which outperforms Calvin’s by 4.43x.

There are two reasons why lazy evaluation has bet-

ter throughput (547 kps) than DOCC. First, it lets

transactions accessing the same data execute on the

same CPU and thus leverages cache locality. Second,

its code is highly optimized for the TPC-C benchmark.

For example, it manually batches data accesses in TPC-

C and only schedules them once. Lazy evaluation dedi-

cates one thread to generate the dependency graph and

1○Ren K. Calvin GitHub repository. https://github.com/yaledb/calvin, Sept. 2019.
2○Evaluation not presented in the paper shows that the optimized Calvin has better performance than Calvin’s source code.
3○The Transaction Processing Council. TPC-C Benchmark (Revision 5.11.0). http://www.tpc.org/tpcc/, Sept. 2019.

390 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

is bottlenecked when there are 12 workers.

DrTM+R has the best peak throughput at 823 kps,

as OCC favors transaction workload under low con-

tention.

For determinism, DOCC’s transactions have to en-

ter the validation phase and the commit phase seri-

ally which may become the bottleneck. However, with

snapshot and prefetching optimizations, the overhead

of these two phases is much lower than that of deter-

ministic locking.

High Contention. Fig.7 shows the TPC-C bench-

mark performance of four databases under high con-

tention.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t

(k
p
s)

Number of Workers

DOCC
Calvin
DrTM+R
Lazy
Evaluation

Fig.7. Single-node throughput of TPC-C benchmark under high
contention.

Calvin’s throughput is constant as its single-thread

performance, about 50 kps. In TPC-C, payment trans-

action updates the warehouse table, which causes high

contention when acquiring locks. Therefore, the exe-

cution of Calvin under high contention is almost se-

rial. In addition, the locking overhead makes the

performance of Calvin even worse. For DOCC, al-

though DOCC frequently retries under high contention,

prefetching used at transactions’ retry makes the over-

head of fetching records from storage negligible. There-

fore, we can see that DOCC’s peak throughput is

about 412 kps, which is 8.24x higher than that of

Calvin. DOCC’s optimistic execution helps improve

performance even under high contention.

Lazy evaluation has the best throughput at 758 kps,

which is even higher than its own throughput under

low contention. This is because only a little amount of

data is accessed under high-contention and lazy evalua-

tion’s locality-friendly design can fully exploit the per-

formance of cache. DrTM+R suffers from the over-

head of frequent retry; therefore its peak throughput is

only 312 kps with eight workers and drops dramatically

when adding more workers.

4.3 Scalability

In this subsection, we use an eight-machine clus-

ter to evaluate the scalability. On each machine, 20

and 24 workers are used for deterministic databases and

DrTM+R, respectively.

Fig.8 and Fig.9 show the scalability of three

databases with TPC-C benchmark. The per-node

throughput of two deterministic databases is roughly

the same as their single-node throughput and the scala-

bility of both deterministic databases is nearly linear.

At the point of eight machines, DOCC outperforms

Calvin 4.31x under low contention and 8.46x under

high contention, as DOCC’s single-node performance

is higher.

 0

 1 000

 2 000

 3 000

 4 000

 5 000

 6 000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(k
p
s)

Number of Nodes

DOCC
Calvin
DrTM+R

Fig.8. Scalability of TPC-C benchmark under low contention.

 0

 1 000

 2 000

 3 000

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(k
p
s)

Number of Nodes

DOCC
Calvin
DrTM+R

Fig.9. Scalability of TPC-C benchmark under high contention.

By executing transactions according to the predeter-

mined order, each node of the deterministic database

can decide whether to commit the transaction indi-

vidually instead of applying distributed commit proto-

Zhi-Yuan Dong et al.: Optimistic Transaction Processing in Deterministic Database 391

col. Therefore, both deterministic databases have good

scalability across multiple nodes.

DrTM+R is a well-designed database, as the TPC-

C benchmark partitioned by warehouses is a scalable

workload. DrTM+R can also have good scalability.

The comparative relation of DOCC’s and DrTM+R’s

performance is the same as that of single-node evalua-

tion (Subsection 4.2).

4.4 Factor Analysis

To understand the benefits of DOCC’s optimiza-

tions, we show a factor analysis by running TPC-C

benchmark under low contention. We use a single ma-

chine with 20 workers to do the analysis. The re-

sult is in Fig.10. “Basic” represents the basic algo-

rithm of DOCC (Subsection 3.1). When adding snap-

shot (“+Snapshot”) (Subsection 3.2), the performance

achieves 2.05x than that of “Basic”. After prefetching

(“+Prefetching”) (Subsection 3.3) is applied cumula-

tively, the final performance achieves 2.66x. The ana-

lysis demonstrates that both optimizations of DOCC

have significant improvements towards performance,

because snapshot eliminates the blocking of waiting for

previous read-only transactions and prefetching short-

ens the overhead of transaction’s retry.

 0

 100

 200

 300

 400

 500

 600

Basic +Snapshot +Prefetching

1.00x

2.05x

2.66x

T
h
ro

u
g
h
p
u
t

(k
p
s)

Fig.10. Factor analysis of each DOCC’s optimization.

5 Related Work

Deterministic Database. Faleiro et al. [3] proposed

a deterministic database with lazy evaluation. Given

predetermined order, the transactions can be executed

lazily by constructing the dependency graph. In or-

der to determine the transaction’s commit decision and

read/write sets, transactions are divided into Eager and

Lazy parts, which requires detailed analysis for stored

procedures. DOCC does not need such analysis.

Very lightweight locking (VLL) [4] and BOHM [5]

also target on improving deterministic database’s scala-

bility within one machine. VLL uses a multi-threaded

lightweight locking mechanism while BOHM leverages

multi-versioned storage and intra-transaction paral-

lelism. However, in these approaches, the read/write

sets or write set must be known in advance. Relatively,

DOCC does not assume pre-knowledge of transactions’

read/write sets.

Optimistic Concurrency Control (OCC). OCC

can reduce transactions’ contention and exploit trans-

actions’ parallelism thus being favoured by many

databases such as FOEDUS [13], Silo [7], DrTM+R [11],

Fasst [14], and DrTM+H [15]. After OCC was proposed

by Kung and Robinson [16], there are many researches

focusing on its variants [17–21]. Our work is also a vari-

ant of OCC which targets deterministic databases.

Multi-Version Concurrency Control (MVCC).

MVCC [22–25] ensures that the reader never blocks the

writer which leads to better performance. MVCC

has been applied in many databases such as SAP

HANA [26], Hekaton [27], Deuteronomy [28], Silo [7],

BOHM [5], and HyPer [29]. Larson et al. [30] revisited

the performance of MVCC. These studies can further

optimize DOCC’s snapshot design and implementation.

Concurrency Control with Hardware Support. There

is a trend of applying hardware features to de-

velop high-performance concurrency control. Eris [31]

uses programmable switches for sequencing and pro-

vides a high-performance in-network concurrency con-

trol. DBX [32] uses hardware transactional memory

(HTM) to protect OCC’s validation phase and com-

mit phase. DrTM [33, 34] uses both HTM and remote

direct memory access (RDMA) to provide a high-

performance concurrency control based on two-phase

locking. DrTM+R [11], Fasst [14] and DrTM+H [15] fully

leverage the feature of RDMA to accelerate OCC with

distributed transactions. These studies are orthogo-

nal to our work, as DOCC can also use programmable

switches for determining the transaction execution or-

der, use HTM for protecting DOCC’s validation phase

and commit phase, and use RDMA for speeding up the

network message passing between DOCC’s machines.

Fast Concurrency Control for Multicore and Clus-

ter. H-store [12, 35] and VoltDB [36] execute transac-

tions serially on one physical unit, which can be a

CPU core or a machine in distributed databases. Well-

partitioned transactions can achieve good performance.

Granola [37] uses a novel distributed coordination pro-

tocol to determine transactions’ execution order.

Transaction Chopping. Previous work [38–40] shows

392 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

the possibility to decompose transactions with ana-

lysis of conflict graphs. Lynx [41] and ROCOCO [42]

analyze the transactions’ chopping graph to reduce

latency and to improve parallelism for distributed

transactions. DrTM [33, 34] uses transaction chopping

to decompose a long-running transaction into smaller

pieces, and thus avoids frequent aborts. Callas [43] and

IC3 [44] leverage transaction chopping to fully exploit

the constrained parallel execution between pieces of

transactions. Piece-wise-visibility [45] uses transactions’

control-flow graph to exploit the possibility of reading

uncommitted data. We believe that DOCC can lever-

age transaction chopping to exploit transactions’ par-

allelism further.

6 Futrue Work

Although the deterministic database has high scala-

bility, its per-node sequencer which predetermines the

transaction order can become a scalability issue when

the number of nodes grows very high. At present, a

single-thread sequencer is enough for DOCC running

on an 8-node cluster. We think this problem can be

solved with engineering techniques like multi-threading

and treat it as our future work.

Meanwhile, DOCC currently only supports one-shot

transactions; therefore DOCC does not work well for

workloads that are hard to be partitioned perfectly.

Our future work is to generalize DOCC and support

general transaction models with minimum overhead.

7 Conclusions

We presented a deterministic concurrency control

protocal called deterministic and optimistic concur-

rency control (DOCC). The first advantage of DOCC

is to allow transactions’ optimistic execution; thus

the determinism is enforced lazily. The second point

is that, with snapshot, read-only transaction never

blocks the execution, which further improves the per-

formance. Therefore, DOCC is able to improve deter-

ministic database’s scalability within one machine. To

demonstrate DOCC’s effects, we implemented DOCC.

The evaluation on TPC-C with a cluster of eight 24-core

machines shows that DOCC can outperform state-of-

the-art deterministic database, Calvin.

References

[1] Thomson A, Diamond T, Weng S C, Ren K, Shao P, Abadi

D J. Calvin: Fast distributed transactions for partitioned

database systems. In Proc. the 2012 ACM SIGMOD Inter-

national Conference on Management of Data, May 2012,

pp.1-12.

[2] Thomson A, Abadi D J. The case for determinism in

database systems. Proceedings of the VLDB Endowment,

2010, 3(1): 70-80.

[3] Faleiro J M, Thomson A, Abadi D J. Lazy evaluation

of transactions in database systems. In Proc. the 2014

ACM SIGMOD International Conference on Management

of Data, June 2014, pp.15-26.

[4] Ren K, Thomson A, Abadi D J. Lightweight locking for

main memory database systems. Proceedings of the VLDB

Endowment, 2012, 6(2): 145-156.

[5] Faleiro J M, Abadi D J. Rethinking serializable multiversion

concurrency control. Proceedings of the VLDB Endowment,

2015, 8(11): 1190-1201.

[6] Fraser K. Practical lock-freedom. Technical Report, Univer-

sity of Cambridge, 2004. https://www.cl.cam.ac.uk/techre-

ports/UCAM-CL-TR-579.pdf, June 2019.

[7] Tu S, Zheng W, Kohler E, Liskov B, Madden S. Speedy

transactions in multicore in-memory databases. In Proc.

the 24th ACM SIGOPS Symposium on Operating Systems

Principles, November 2013, pp.18-32.

[8] Hart T E, McKenney P E, Brown A D, Walpole J. Per-

formance of memory reclamation for lockless synchroniza-

tion. Journal of Parallel and Distributed Computing, 2007,

67(12): 1270-1285.

[9] Arcangeli A, Cao M, McKenney P E, Sarma D. Using read-

copy-update techniques for system V IPC in the Linux 2.5

kernel. In Proc. the 2003 USENIX Annual Technical Confe-

rence, June 2003, pp.297-309.

[10] McKenney P E, Slingwine J D. Read-copy update: Us-

ing execution history to solve concurrency problems. In

Proc. the 15th ISCA International Conference on Parallel

and Distributed Computing and Systems, September 2002,

pp.509-518.

[11] Chen Y, Wei X, Shi J, Chen R, Chen H. Fast and general

distributed transactions using RDMA and HTM. In Proc.

the 11th European Conference on Computer Systems, April

2016, Article No. 26.

[12] Stonebraker M, Madden S, Abadi D J, Harizopoulos S,

Hachem N, Helland P. The end of an architectural era: (It’s

time for a complete rewrite). In Proc. the 33rd Interna-

tional Conference on Very Large Data Bases, September

2007, pp.1150-1160.

[13] Kimura H. FOEDUS: OLTP engine for a thousand cores

and NVRAM. In Proc. the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, May 2015,

pp.691-706.

[14] Kalia A, Kaminsky M, Andersen D. G. FaSST: Fast, scal-

able and simple distributed transactions with two-sided

(RDMA) datagram RPCs. In Proc. the 12th USENIX Sym-

posium on Operating Systems Design and Implementation,

November 2016, pp.185-201.

[15] Wei X, Dong Z, Chen R, Chen H. Deconstructing RDMA-

enabled distributed transactions: Hybrid is better! In Proc.

the 13th USENIX Symposium on Operating Systems De-

sign and Implementation, October 2018, pp.233-251.

Zhi-Yuan Dong et al.: Optimistic Transaction Processing in Deterministic Database 393

[16] Kung H T, Robinson J T. On optimistic methods for con-

currency control. ACM Transactions on Database Systems,

1981, 6(2): 213-226.

[17] Adya A, Gruber R, Liskov B, Maheshwari U. Efficient

optimistic concurrency control using loosely synchronized

clocks. ACM SIGMOD Record, 1995, 24(2): 23-34.

[18] Liskov B, Castro M, Shrira L, Adya A. Providing persistent

objects in distributed systems. In Proc. the 13th European

Conference on Object-Oriented Programming, June 1999,

pp.230-257.

[19] Yuan Y, Wang K, Lee R, Ding X, Xing J, Blanas S, Zhang

X. BCC: Reducing false aborts in optimistic concurrency

control with low cost for in-memory databases. Proceedings

of the VLDB Endowment, 2016, 9(6): 504-515.

[20] Wang T, Kimura H. Mostly-optimistic concurrency con-

trol for highly contended dynamic workloads on a thousand

cores. Proceedings of the VLDB Endowment, 2016, 10(2):

49-60.

[21] Yu X, Pavlo A, Sánchez D, Devadas S. TicToc: Time

traveling optimistic concurrency control. In Proc. the 2016

ACM SIGMOD International Conference on Management

of Data, June 2016, pp.1629-1642.

[22] Weikum G, Vossen G. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Con-

trol and Recovery (1st edition). Morgan Kaufmann, 2001.

[23] Agrawal D, Sengupta S. Modular synchronization in dis-

tributed, multiversion databases: Version control and con-

currency control. IEEE Transactions on Knowledge and

Data Engineering, 1993, 5(1): 126-137.

[24] Bernstein P A, Hadzilacos V, Goodman N. Concurrency

Control and Recovery in Database Systems (1st edition).

Addison-Wesley, 1987.

[25] Mohan C, Pirahesh H, Lorie R. Efficient and flexible meth-

ods for transient versioning of records to avoid locking by

read-only transactions. In Proc. the 1992 ACM SIGMOD

International Conference on Management of Data, June

1992, pp.124-133.

[26] Färber F, Cha S K, Primsch J, Bornhövd C, Sigg S, Lehner

W. SAP HANA database: Data management for modern

business applications. ACM SIGMOD Record, 2012, 40(4):

45-51.

[27] Diaconu C, Freedman C, Ismert E, Larson P Å, Mittal

P, Stonecipher R, Verma N, Zwilling M. Hekaton: SQL

server’s memory-optimized OLTP engine. In Proc. the 2013

ACM SIGMOD International Conference on Management

of Data, June 2013, pp.1243-1254.

[28] Levandoski J, Lomet D, Sengupta S, Stutsman R, Wang

R. High performance transactions in deuteronomy. In Proc.

the 7th Biennial Conference on Innovative Data Systems

Research, January 2015, Article No. 44.

[29] Neumann T, Mühlbauer T, Kemper A. Fast serializ-

able multi-version concurrency control for main-memory

database systems. In Proc. the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, May 2015,

pp.677-689.

[30] Larson P Å, Blanas S, Diaconu C, Freedman C, Patel

J M, Zwilling M. High-performance concurrency control

mechanisms for main-memory databases. Proceedings of the

VLDB Endowment, 2011, 5(4): 298-309.

[31] Li J, Michael E, Ports D R. Eris: Coordination-free con-

sistent transactions using in-network concurrency control.

In Proc. the 26th Symposium on Operating Systems Prin-

ciples, October 2017, pp.104-120.

[32] Wang Z, Qian H, Li J, Chen H. Using restricted transac-

tional memory to build a scalable in-memory database. In

Proc. the 9th European Conference on Computer Systems,

April 2014, Article No. 26.

[33] Wei X, Shi J, Chen Y, Chen R, Chen H. Fast in-memory

transaction processing using RDMA and HTM. In Proc. the

25th Symposium on Operating Systems Principles, October

2015, pp.87-104.

[34] Chen H, Chen R, Wei X, Shi J, Chen Y, Wang Z, Zang

B, Guan H. Fast in-memory transaction processing using

RDMA and HTM. ACM Transactions on Computer Sys-

tems, 2017, 35(1): Article No. 3.

[35] Kallman R, Kimura H, Natkins J et al. H-store: A high per-

formance, distributed main memory transaction processing

system. Proceedings of the VLDB Endowment, 2008, 1(2):

1496-1499.

[36] Stonebraker M, Weisberg A. The voltDB main memory

DBMs. IEEE Data Eng. Bull., 2013, 36(2): 21-27.

[37] Cowling J, Liskov B. Granola: Low-overhead distributed

transaction coordination. In Proc. the 2012 USENIX An-

nual Technical Conference, June 2012, pp.223-235.

[38] Bernstein P A, Shipman D W. The correctness of con-

currency control mechanisms in a system for distributed

databases (SDD-1). ACM Transactions on Database Sys-

tems, 1980, 5(1): 52-68.

[39] Bernstein A J, Gerstl D S, Lewis P M. Concurrency con-

trol for step-decomposed transactions. Information Sys-

tems, 1999, 24(8): 673-698.

[40] Shasha D, Llirbat F, Simon E, Valduriez P. Transac-

tion chopping: Algorithms and performance studies. ACM

Transactions on Database Systems, 1995, 20(3): 325-363.

[41] Zhang Y, Power R, Zhou S, Sovran Y, Aguilera M K, Li

J. Transaction chains: Achieving serializability with low la-

tency in geo-distributed storage systems. In Proc. the 24th

ACM SIGOPS Symposium on Operating Systems Princi-

ples, November 2013, pp.276-291.

[42] Mu S, Cui Y, Zhang Y, Lloyd W, Li J. Extracting more

concurrency from distributed transactions. In Proc. the 11th

USENIX Symposium on Operating Systems Design and Im-

plementation, October 2014, pp.479-494.

[43] Xie C, Su C, Littley C, Alvisi L, Kapritsos M, Wang Y.

High-performance ACID via modular concurrency control.

In Proc. the 25th Symposium on Operating Systems Prin-

ciples, October 2015, pp.279-294.

[44] Wang Z, Mu S, Cui Y, Yi H, Chen H, Li J. Scaling multicore

databases via constrained parallel execution. In Proc. the

2016 ACM SIGMOD International Conference on Mana-

gement of Data, June 2016, pp.1643-1658.

[45] Faleiro J M, Abadi D J, Hellerstein J M. High performance

transactions via early write visibility. Proceedings of the

VLDB Endowment, 2017, 10(5): 613-624.

394 J. Comput. Sci. & Technol., Mar. 2020, Vol.35, No.2

Zhi-Yuan Dong received his B.S.

degree in software engineering from

Shanghai Jiao Tong University, Shang-

hai, in 2017. He is a Master student

and will be a Ph.D. candidate of the

Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong Univer-

sity, Shanghai. His current research

interests include distributed system and database systems.

Chu-Zhe Tang was a senior student

in software engineering from Shanghai

Jiao Tong University, Shanghai. In 2019

fall, he became a Ph.D. candidate of

the Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong Univer-

sity, Shanghai. His research interests

include database systems and machine

learning.

Jia-Chen Wang received his B.S.

degree in software engineering from

Nanjing University, Nanjing, in 2018.

He is a Master student of the Institute

of Parallel and Distributed Systems,

Shanghai Jiao Tong University, Shang-

hai. His research interests include

database systems and machine learning.

Zhao-Guo Wang received his B.S.

degree in software engineering from

Nanjing University, Nanjing, in 2008,

and his M.S. and Ph.D. degrees in com-

puter science from Fudan University,

Shanghai, in 2011 and 2014, respec-

tively. He is an associate professor of

the Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong University, Shanghai. His

research interests include distributed systems and storage

systems.

Hai-Bo Chen received his B.S. and

Ph.D. degrees in computer science from

Fudan University, Shanghai, in 2004

and 2009, respectively. He is a professor

and the director of the Institute of Para-

llel and Distributed Systems, Shanghai

Jiao Tong University, Shanghai. He is

a distinguished member of CCF, and a

senior member of ACM and IEEE. His research interests

include operating systems, and parallel and distributed

systems.

Bin-Yu Zang received his B.S., M.S.

and Ph.D. degrees in computer science

from Fudan University, Shanghai, in

1987, 1990 and 1999 respectively. He is

the dean of School of Software, Shang-

hai Jiao Tong University, Shanghai.

He is also a professor of the Institute

of Parallel and Distributed Systems,

Shanghai Jiao Tong University, Shanghai, and a distin-

guished member of CCF. His research interests include

compilers, computer architecture, operating systems, and

parallel and distributed systems.

	!JCST2020年封面2
	2020-2-14-9700
	2020-2ml

