SIndex: A Scalable Learned Index for String Keys

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

ABSTRACT

The learned index structures have reshaped our perspectives
on the design of traditional data structures. With machine
learning (ML) techniques, they can achieve better lookup
performance than existing indexes. However, current learned
indexes primarily focus on integer-key workloads and failed
to efficiently index variable-length string keys. We introduce
SIndex, a concurrent learned index specialized in variable-
length string key workloads. To reduce the cost of model
inference and data accesses, SIndex groups keys with shared
prefixes and use each key’s unique part for model training.
We evaluate SIndex with both real-world and synthesized
datasets. The result shows that SIndex can achieve up to 91%
better performance compared with other state-of-the-art in-
dex structures. We have open-sourced our implementation?.

CCS CONCEPTS

« Information systems — Data structures.

ACM Reference Format:

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, Haibo Chen. 2020.
SIndex: A Scalable Learned Index for String Keys. In 11th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys "20), August 24-25,
2020, Tsukuba, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3409963.3410496

1 INTRODUCTION

The recent work by Kraska et al. [12] has started an era
of learned index structures, which use ML models to index
data [7, 10, 15, 17, 18]. First, learned index structures ask
models to learn the distribution of keys. Then, with trained
models, they can predict the position of a given key. The
predicted positions are close to actual positions, so that the
requested data can be found efficiently. Results show that

Ihttps://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-/tree/sindex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APSys °20, August 24-25, 2020, Tsukuba, Japan

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8069-0/20/08....$15.00
https://doi.org/10.1145/3409963.3410496

leveraging ML techniques can improve the lookup perfor-
mance by up to 3x while reducing the memory consumption
by more than 90%.

However, the efficiency of learned indexes comes with
several drawbacks: high update latency, restricted key types
and poor scalability. Successive works have targeted some
of the limitations [7, 10, 15, 17, 18]. But none of them can
efficiently support workloads with variable-length string
keys which are common in the real world [1, 2, 6]. The ma-
jor challenge of supporting such workloads is that the cost
of both model inference and data accesses increases with
the increasing key length. This is caused by inflated arith-
metic computation and memory accesses. Furthermore, the
model accuracy tends to decrease?, which results in more
data accesses during lookups. An intuitive solution is to use
more sophisticated models such as deep neural networks
to improve accuracy and hence reduce the amount of data
accessed. Unfortunately, this method incurs significantly
higher inference and training costs and therefore fails to
improve the overall performance.

This paper introduces SIndex, a scalable learned index
that can efficiently support string keys. Inspired by existing
string key indexes [3-5, 13, 16], SIndex takes advantage of
common prefixes to improve lookup latency. Specifically,
SIndex greedily clusters keys with common prefixes into
groups (Section 3.2). Then, in each group, SIndex uses the
unique part of each key, the partial key, to train the model
and index the data (Section 3.1). Experimental results show
that SIndex has up to 91% better performance over other
state-of-the-art index structures.

In summary, this paper makes the following contributions.

e An empirical evaluation that manifests the challenges of
supporting variable-length string keys in learned index
structures.

e A novel learned index design, SIndex, that exploits com-
mon prefixes to achieve efficient model inference and data
accesses.

o A set of experimental results that demonstrates the effec-
tiveness of SIndex with both real-world and synthesized
datasets.

2 Although the model accuracy highly depends on the datasets, we have wit-
nessed such phenomenon with synthesized datasets of various distributions.

https://doi.org/10.1145/3409963.3410496
https://doi.org/10.1145/3409963.3410496
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-/tree/sindex
https://doi.org/10.1145/3409963.3410496

APSys ’20, August 24-25, 2020, Tsukuba, Japan

2 BACKGROUND AND MOTIVATION

2.1 Learned Indexes

Learned indexes use ML models to index data, key-value
records [7, 10, 12, 15, 17, 18]. Specifically, indexes are consid-
ered as functions that map keys to the positions of associated
records. Thus, the core idea of learned indexes is using the
ML model to predict the record positions of the given keys.
In the range index setting, assuming the records are continu-
ously sorted, the index function is effectively the cumulative
distribution function (CDF) of keys [12]. After using ML
models, such as neural networks, to learn the CDF F, record
positions can be calculated by | F(key) X N |, where N is the
number of records.

The original the learned index® [12] adopts two key mecha-
nisms for high performance. First, it introduces a hierarchical
model architecture, named Recursive Model Indexes (RMI), to
improve prediction accuracy. Since the prediction error of a
single model increases with the increase of dataset size, the
learned index uses a multi-stage architecture to reduce the
error. In RMI, each model at higher stages dispatch requests
to the models at lower stages; the last stage models predict
the positions of requested records with given keys. Second,
each last stage model memorizes the maximal prediction
€ITOr €4y and the minimal error e,,;,. After getting the pre-
dicted position p, the learned index performs a binary search
within the range [p + emin, P + €max |, Which is guaranteed to
contain the record if it exists.

To handle concurrent update operations efficiently, Tang
et al. proposed a technique called Two-Phace Compaction
and integrated it in XIndex, an updatable concurrent learned
index [18]. XIndex is a two-layer index structure. The top
layer contains a single node called root node, and the bottom
layer includes several nodes called group nodes. XIndex range-
partitions records into different groups. An RMI model is
used in the root node to index those groups. Each group is
responsible for indexing a range of data using multiple linear
models and a delta index. The data indexed by a group’s
linear models are contiguous, sorted in an array. The delta
index is used to buffer inserted records, and it is conditionally
compacted with the sorted data indexed by models.

To process a request, XIndex first locates the target group
through the root node’s RMI model. Then it finds the corre-
sponding model in the group node that manages the given
key. For a read request, XIndex uses the model to search the
target record within the sorted data array. If the record is
not found, XIndex continues to search the delta index. For
a write request, XIndex first tries to perform an update in-
place in the sorted data array. If a qualified record does not
exist, XIndex then inserts a new record into the delta index.

3 We refer to the learned index design proposed by Kraska et al. as “the
learned index”.

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, Haibo Chen

XIndex E===3 Masstree EZ==1

1

@@@i@@@_

32 64 128
Key length (Byte)

Normalized
throughput

(a) Read-only performance.

Xindex === Masstree EX==1

T
33 [&=
N Q - O
SN2 L
=l 14
£33 oo
£0 %
o= 4
Zs 0 i @

Al
32 64 96 128
Key length (Byte)

(b) Read-write performance.

Figure 1: Normalized performance of XIndex and
Masstree with various key lengths under 100M ran-
domly generated datasets. Throughputs are normal-
ized to their respective throughputs under 8-byte
string keys. The numbers above the bars show the ab-
solute throughput in MOPS. XIndex tokenizes a string
into a feature vector x € R" as model features, where
n is the string length, and x; is the ASCII value of i-th
character. The read-write ratio is 9:1 for the read-write
workload, where writes comprise of inserts, deletes
and updates (1:1:2).

Comparing with the learned index, XIndex has 2.5X better
performance with the workload of 10% updates, and 1.7X
better with the read-only workload of skew accesses. For the
read-only workload with uniform access distribution, the
performance of XIndex is similar to the learned index.

2.2 Problem Statement

Existing learned indexes have shown superior performance
on integer keys. However, they suffer significant perfor-
mance degradation under string keys. Figures 1a and 1b
show the read-only and read-write performance of XIndex,
in comparison with Masstree, with various key lengths. Both
read and write performance of XIndex drops dramatically
with the increase of key length. For the read-only workload,
when the key length is 128 bytes, XIndex only has 30% of its
8-byte key performance. For the read-write workload, XIn-
dex’s performance drops more than 66%, while Masstree’s
only drops 34%.

There are three reasons for the poor performance. First,
the model computation cost increases dramatically along
with the key length. Even for the simplest model, namely the
linear model, model computation still costs 400 ns when the
key length is 128 bytes, 23X higher than that of an 8-byte
key. Second, the model errors also increase. For the random

SIndex: A Scalable Learned Index for String Keys

dataset, the average error grows from 24 to 68 as the key
length grows from 8 to 128 bytes. Increased errors indicate
that more records are accessed during lookups, which in-
creases the latency. More complicated models, such as neural
networks, can help reduce errors [12]. But they come with
unacceptable prediction cost and training cost (1400 ns of
prediction for 128-byte key), leading to no improvement for
the overall performance. Third, the binary search also incurs
large overhead under string keys — it takes 1370 ns for 128-
byte keys and only 590 ns for 8-byte keys. This is because
the comparison cost is proportional to the key length.

To summarize, the key length is critical for performance as
it equals both model feature length and the number of com-
parisons in bytes. Our key insight is that some comparisons
and model computations are unnecessary — in many cases,
substrings of keys are sufficient to uniquely identify each
record. By eliminating these overheads, we can improve the
performance with string keys.

3 SINDEX

Figure 2 shows the architecture of SIndex. Similar to XIndex,
SIndex also adopts a two-layer design — one root node in
the top layer and several group nodes in the bottom layer.
Each group is responsible for storing records of a specific
key range. Records are stored either in a sorted data array,
indexed by a linear model, or a delta index if introduced by
insertions. For indexing groups, the root node stores each
group’s pivot keys, the lower bound of a group’s responsible
range. The root leverages multiple linear models to index
groups. SIndex continuously checks all groups in the back-
ground. If a group’s delta index size is larger than the size
threshold given by the user, SIndex performs compaction.
During compaction, SIndex merges the delta index with the
old sorted array into a new sorted array and retrains models.

SIndex makes three important design choices that are
tailored for string keys. First, SIndex uses partial keys to
reduce both model computation cost and comparison cost
(section 3.1). The partial keys are order-preserving substrings
of original keys that uniquely identify each record within
a group. An efficient algorithm is used to compute partial
keys. Second, SIndex leverages a greedy grouping strategy to
adaptively partition keys into different groups (section 3.2).
After partitioning, each group contains a maximal number
of keys, which keeps the group’s model error and partial
key length under specified thresholds. This partition scheme
improves SIndex by reducing the number of groups and
hence the indexing burden of the root. Third, SIndex uses a
piecewise linear model instead of an RMI model in the root
node to index groups (section 3.3). Using a piecewise linear
model helps SIndex gain control on indexing the key range

APSys ’20, August 24-25, 2020, Tsukuba, Japan

[5)
"8 Linear Model Linear Model
Z
3 — AN
o .
~ Group Pivots
1 1
I J
o
8 Linear Model
Z
=) Data Array Group, e Group,,
<]
5 Delta Index

Figure 2: The architecture of SIndex.

of each model. As a result, partial keys and greedy grouping
strategy can be reused for the root.

3.1 Partial Key

In each group, SIndex extracts partial keys for model com-
putation and comparisons. Informally, partial keys are the
shortest fixed-length substrings of the keys within the group,
which (1) have stripped off common prefixes, and (2) remain
distinguishable from each other with respect to their original
ordering. Specifically, for any key in a group, denoted as k,
the partial key is k[pl:pl+ el], which is an el-length substring,
starting at the zero-based index pl. The pl is the longest com-
mon prefix length among keys in the group, and the el is the
effective key length defined below. The effective key length is
the shortest prefix length among the stripped keys, keys with
first pl characters removed, that still maintains uniqueness
within one group.

Algorithm 1 summarizes the procedure for identifying the
partial key of a sorted key array. Given a sorted key array,
SIndex first initializes the prefix length as the common pre-
fix length of the first two keys, using the helper function
CommonPrefixLen (Line 1). CommonPrefixLen returns the
common prefix length of the substrings of input keys k1 and
k2, starting at s (Line 9-13). Afterward, SIndex iterates over
the sorted key array with a for loop to calculate the longest
common prefix of all the keys, pl, and the longest common
prefix length of two adjacent keys, max_prefix. Within a
loop, let k be the key being examined, SIndex updates pl to
be the prefix length between the existing common prefix
among already examined keys and k (Line 4). max_prefix is
updated to be the common prefix length between the current
key and its previous key, pl + I, if this value is larger than
the previous one (Line 5-6). Finally, the effective length is
calculated by max_prefix — pl (Line 7).

SIndex benefits from partial keys in two ways. First, partial
keys improve the efficiency of both model computation and
model training: SIndex directly tokenizes partial keys into
feature vectors, resulting in shorter feature length and hence

APSys ’20, August 24-25, 2020, Tsukuba, Japan

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, Haibo Chen

Algorithm 1: Compute Partial Key

Algorithm 2: Greedy Grouping

In :A sorted key array K, a key length kl.
Out: The prefix length pl, the effective key length el.
1 pl « CommonPrefixLen(0, K[0], kI, K[1], ki)
max_prefix « pl
for i « 2 to K.size do
pl <« CommonPrefixLen(0, K[i — 1], pl, K[i], ki)
I « CommonPrefixLen(pl, K[i — 1], kI, K[i], kl)
max_prefix «— max(max_prefix, pl +)

A G W N

N

el «— max_prefix — pl
8 return pl, el

9 Function CommonPrefixLen(s, k1, len1, k2, len2):
10 for i « s to min(lenl, len2) — 1 do
11 if k1[i] # k2[i] then

L L returni-—s

13 return min(lenl, len2) — s

reduced arithmetic computation. Second, the binary search
overhead is reduced as well. SIndex uses the partial key
for key comparison because of the uniqueness and order
preservation of each partial key. Hence, the comparison cost
is, to a great extent, diminished.

3.2 Greedy Grouping

SIndex greedily range-partitions data into different groups to
ensure that the partial key length and model errors are under
specified thresholds. Algorithm 2 depicts this greedy strategy
of grouping data in SIndex. User-specified parameters are
used to fine-tune SIndex: the error threshold et, the partial
key length threshold pt, the forward step size fs, and the
backward step size bs. SIndex iterates over all the records.
During the iteration, it determines whether to add fs records
into the current group or remove bs records from the current
group according to the two thresholds, et and pt. Specifically,
each time SIndex moves forwards, it first adds the next fs
records to the current group (Line 20-21). Then SIndex trains
a linear model on the current group to get the average error
(Line 22-23) and uses Algorithm 1 to compute the length
of the partial key (Line 24). It continues to move forwards
as long as both the model error and partial key length are
smaller than their respective thresholds. The last forward
step can cause a violation of thresholds, therefore SIndex
uses backward steps for alleviation. For each backward step,
SIndex removes the most recently added bs records from the
current group (Line 27). It repeats backward steps until both
the model error restriction and partial key length restriction
are restored (Line 25).

In :A sorted data array D, an error threshold et, a
partial key length threshold pt, a forward step
size fs, a backward step size bs (< f5).

Out: Groups of records G.

14 G0

15 while i < D.size do

16 cur_grp < new empty group

17 err — 0;pl <0

18 while err < et and pl < pt do

19 ie—i+fs

20 records « retrieve next fs records

21 add records to cur_grp

22 train a linear model on cur_grp

23 err < get average model error for cur_grp
24 pl < get partial key length for cur_grp.Keys
25 while err > et or pl > pt do

26 i« i-bs

27 remove last bs records from cur_grp

28 train model on cur_grp

29 err « get average model error for cur_grp
30 pl — get partial key length for cur_grp.Keys
31 add cur_grpto G

32 return G

3.3 Piecewise Linear Model for the Root

SIndex uses a piecewise linear model in the root node to
index groups. A piecewise linear model consists of a series
of linear segments, each of which is represented as a linear
model. Each model is responsible for serving requests of
non-overlapping key ranges. At training time, these linear
models are trained using group pivots. SIndex exploits the
same greedy grouping algorithm to determine assignment
of group pivots to each model, which in turn determines the
key range of each model. Then it applies the partial key in
each model. At inference time, SIndex uses binary search to
find responsible linear models for requests.

SIndex chooses the piecewise linear model instead of the
RMI model, which is used in the root of XIndex, for two
reasons. First, in RMI, two pivots distant with each other
can be assigned to the same leaf model, which results in a
large span in the key range of the leaf model. The larger
span the key range has, the less chance SIndex has to remove
common prefix for the model, and hence less performance
improvement from partial keys. Second, in practice, multiple
stages of linear models in RMI causes a significant increase
in computational overhead for string keys. This increase
cancels off the benefits of reduced model error brought by

SIndex: A Scalable Learned Index for String Keys

RMLI, leading to no improvement for the overall performance.
For a specific case, after adding another layer, binary search
time is reduced from 1291 ns to 1091 ns, but the inference
time increases from 227 ns to 616 ns.

3.4 Optimization

To accelerate model inference, SIndex exploits SIMD instruc-
tions to perform model computation. Specifically, SIndex uses
_mm256_fmadd_pd in FMA to perform the fused multiply-add
operation of every four 8-byte floating-point numbers in one
instruction. SIndex will fall back to the conventional way
— one multiplication at a time — for dot product when the
feature length is less than four.

4 EVALUATION

In this section, we experimentally evaluated the performance
of SIndex and compared it with other state-of-the-art index
structures.

Implementation. We implement SIndex in C++. We store
metadata of partial key as part of groups’ metadata, including
the common prefix length and the effective key length. The
partial key is recalculated each time after compaction. SIndex
applies the greedy grouping algorithm at initialization.
Dataset. We use two families of datasets throughout exper-
iments. One comprises synthetic datasets where all keys
are randomly generated, denote as “R[key length]-[dataset
size]”. The other is a real-world dataset containing 92M URLs
of quotes from Memetracker [14]. The maximum length of
URLs is 128 bytes and the average length is 62 bytes. We to-
kenize URLs into 128-length feature vectors. For URLs with
length n < 128, we set x; = 0 for i > n.

Counterparts. We compare SIndex with XIndex [18], Mass-
tree [16], and Wormbhole [19]. XIndex is a concurrent index
based on learned models. Masstree is a concurrent index that
layers B-tree over Trie. Wormhole is an index that replaces
the internal nodes of B-tree with Trie.

Configuration. The error threshold, et, and the partial key
length threshold, pt, are set to 50 and 4 for the random
dataset, and 500 and 40 for the URL dataset. The forward
step size, fs, and the backward step size bs are set to 500 and
50, respectively. One thread is configured for background
compaction, which is accounted for in the total thread count.
We use the default configurations for other indexes. For each
experiment, we report the steady-state performance after
warming up. The tests are run on a server with two 12-core
Intel Xeon E5-2650 v4 CPU, each with 30 MB LLC.

4.1 Overall Performance

In this section, we measure the overall performance of SIndex,
including the performance under both read-only workloads
and read-write workloads.

APSys ’20, August 24-25, 2020, Tsukuba, Japan

Sindex E===1 Wormhole ==X

Xindex = 1 Masstree E 1
5 12F LI LIS S]
Q
S T TN = SN |
D N - I~ T - I = E i
5
3] AU < B SRR . B i
S]
[|
o
: NS
'_ <4
R64-100M R64-200M R128-100M URL
Dataset

Figure 3: Read-only single-thread performance with
different datasets.

T T

—— Sindex
—#— Xindex |
—— Wormbhole
—&— Masstree

Throughput (Mops)
o
©
T

0 20 40 60 80 100 120 140
Key length (Byte)

Figure 4: Read-only single-thread performance with
different key lengths using random datasets.

Read-only performance. We first measure the single-thread
throughputs of SIndex with read-only workloads using differ-
ent datasets. As shown in Figure 3, SIndex achieves the best
performance among all the indexes under random datasets
but has fewer performance advantages under the URL dataset.
SIndex outperforms XIndex, Masstree and Wormhole by up
to 88%, 91% and 43% respectively under random datasets. Un-
der the URL dataset, SIndex still shows relatively good per-
formance compared with XIndex (1.5X) and Masstree (1.3X).
However, SIndex’s performance is worse than Wormhole by
25%. This is because the URL dataset has more complex data
distribution, leading to larger errors — 4.5% larger than the
average error of the random datasets. Also, the partial key
length is 39 bytes for the URL dataset, which is nearly 10x
larger than that of the random datasets.

We then evaluate SIndex with various key lengths. Fig-
ure 4 shows the results under 100M random dataset, with
key length ranging from 8 bytes to 128 bytes. SIndex shows
considerable performance advantages for all key lengths. Its
performance shows similar scalability in key length as Mass-
tree and Wormbhole. XIndex only achieves good performance
with short keys but suffers large performance degradation
when keys are larger than 8 bytes: the throughout with 128-
byte keys is only 30% of that with 8-byte keys. Compared
with XIndex, with 128-byte keys, SIndex maintains 62% of
its 8-byte throughout and outperforms XIndex by 91%.

APSys ’20, August 24-25, 2020, Tsukuba, Japan

Sindex B2 Wormhole ==X
Xlndex E==1 Masstree ==

Throughput (Mops)

80:20 70:30
Read-write raito

Figure 5: Read-write single-thread performance with
different read-write raitos using R128-100M dataset.

20

T T
—0— Sindex
—#— Xindex
15 | —¢— Wormhole e <
—&— Masstree :

Throughput (Mops)
=
T
|

i i
1 4 8 12 16 20 24
Number of Threads

Figure 6: Read-write performance scalability using
R128-100M dataset. The worklaod has a read-write ra-
tio of 9:1.

20

T T

—@— Sindex
—#— Xindex
15 |- —¢— Wormhole i e T
—&— Masstree

Throughput (Mops)
=
T
|

i i i i
1 4 8 12 16 20 24
Number of Threads

Figure 7: Read-write performance scalability using
R128-100M dataset. The worklaod has a read-write ra-
tio of 9:1 and all writes are in-place updates.

Read-write performance. We then investigate the perfor-
mance of SIndex with read-write workloads using different
read-write ratios. We experiment with the random dataset
of 100M 128-byte keys. The write requests include in-place
updates, inserts, and deletes, with a ratio of 2:1:1. As shown
in Figure 5, SIndex maintains relatively good performance
under read-write workloads. When there are 10% writes, SIn-
dex has 89% better performance than XIndex. When there
are 40% writes, SIndex still has comparable performance
as Wormhole, while being 45% better than XIndex and 21%
better than Masstree.

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, Haibo Chen

Baseline ==X
+Partial Key ===

+Grouping E=—3
+Root Model

+SIMD =1

-
a 2F T] T =
S =
k<
3 1.5 B oo E
I [
£ [
= k<
o 1 1 1o T S NV A B 1
[[$]
N] DO o PN SSAL S HY N ESSY - -
g 05 K
£ [
[
S | s s
R128-100M URL
Dataset

Figure 8: Performance breakdown of SIndex.

Figure 6 shows the scalability in threads under a workload
with a 90:10 read-write ratio. SIndex shows up to 72% perfor-
mance advantages compared with XIndex. However, SIndex
is worse than Wormhole and Masstree under multi-thread
read-write scenarios (19% and 13% worse under 24-thread).
This is mainly because the compaction process is not quick
enough to merge data in delta indexes. Despite the use of
the partial key, the model retraining is still time-consuming
in SIndex— 300 ps to train a linear model with 1400 keys.
This leads to a large delta index size — up to 650 on average
under 24 threads.

We also evaluate the scalability of SIndex with the same
read-write ratio, but all writes are in-place updates. Figure 7
shows the results. SIndex exhibits good scalability in this
workload since there is no need to perform compactions. The
24-thread performance can achieve 21X of its single-thread
performance, which is 17% better than Wormhole.

4.2 Performance Breakdown

In this subsection, we analyze the performance improvement
brought by each design. We start from a baseline design
where none of the proposed techniques is used, denoted as
“Baseline”. Then we incrementally apply our design decisions,
namely the partial key, the greedy grouping, the piecewise
linear model, and the SIMD optimization, and finally obtain
the full SIndex design. Figure 8 shows the throughputs of
applying each of the techniques under random and URL
datasets. Throughputs are normalized to the baseline.

We first apply the partial key in each group. With the
partial key, SIndex improves 35% and 15% under random
and URL datasets, respectively. For the random dataset, the
average key length for model and comparison of all groups is
significantly reduced from 128 bytes to 4 bytes. For the URL
dataset, it is reduced from 128 to 80, with an average prefix
length of 14 bytes. Next, we apply the greedy grouping strat-
egy to range-partition data for group nodes. SIndex has an
improvement of 7% and 9% for the two datasets, respectively.
The average partial key length for groups further decreases
to 39 bytes for the URL dataset. Afterward, the use of the

SIndex: A Scalable Learned Index for String Keys

piecewise linear model in the root node reduces the root
model inference time, bringing 24% and 7% overall improve-
ment. For the random dataset, the root model inference time
decreases from 640 ns to 70 ns. For the URL, it decreases
from 640 ns to 354 ns, with a partial key length of 105 bytes
for root models. Finally, we adopt SIMD for model inference,
which gives SIndex another improvement of 4% for random
and 9% for URL.

5 RELATED WORKS

Learned indexes. The proposal of learned index structures [12]

has boosted a rich corpus of index structures based on learned
models. RMI by Kraska et al. [12] uses a hierarchy of sim-
ple ML models to achieve adequate accuracy with small
model inference cost. For better space efficiency, Ferragina
and Vinciguerra propose PGM-index [8], a learned index
that achieves a provably efficient time and space bounds.
It extends the RMI design by adapting to both the distribu-
tion of keys and their access frequencies. For better build
efficiency, Kipf et al. propose RadixSpline [11], which em-
ploys a bottom-up build method that only needs a single
pass over the dataset. FITing-Tree [10] is a data-aware index
structure, which can be seen as a specialization of RML. It ap-
proximates data distribution using piecewise linear functions
and provides bounded error specified by users to balance
lookup performance and space consumption. ALEX [7] is an
updatable learned index that proposes a careful space-time
trade-off. It dynamically adapts its RMI structure based on
the workload and offers a Gapped Array for model-based in-
sertion. Tang et al. propose XIndex [18], a concurrent learned
index that can handle concurrent update operations. XIndex
uses a two-phase compaction scheme to merge buffered data
into existing sorted data efficiently. Flood [17] is a learned
multi-dimensional index. It exploits ML methods to learn an
optimal layout that divides d-dimensional data space into a
grid of contiguous cells and uses linear models to speed up
queries. LISA [15] is a learned index structure designed for
disk-resident spatial data. It leverages learned models to gen-
erate data layouts in the disk. Compared with these works,
SIndex is the only learned index structure that is optimized
for string keys.

Conventional indexes. A number of conventional index
structures are extensively studied for string keys, most of
which are variants of trie. Trie [9] is a tree-based index struc-
ture where each node represents a slice of the string key.
Keys with common prefixes can be served with a small set
of nodes. The lookup performance is bounded by the length
of the string. Masstree [16] partitions key into 8-byte seg-
ments and index them with a trie structure. Within each
trie node, a concurrent B-tree is used to index the segments.
Height Optimized Trie (HOT) [3] maximizes the node fanout

APSys ’20, August 24-25, 2020, Tsukuba, Japan

to reduce the height of trie. It stores sparse partial keys in
each node for compactness and is carefully engineered for
fast SIMD operations. Wormhole [19] is an index structure
that hybrids B-tree, trie, and hash table. It replaces the in-
ternal nodes of B-tree with a trie, which is then encoded
with a hash table for efficient access. The Adaptive Radix
Tree (ART) [13] adaptively chooses the most compact and
efficient data layout for internal nodes, thus achieving both
space and time efficiency. Compared with them, SIndex takes
advantage of ML models to achieve fast indexing.

6 CONCLUSION

In this paper, we present SIndex, the first concurrent learned
index for string keys. To mitigate the unique challenges in-
troduced by the combination of string key workloads and
ML methods, we propose three innovative designs: partial
keys for reducing the cost of model inference and data access,
a greedy grouping strategy for limiting the length of partial
keys in each group, and a piecewise linear model for the root
for reusing the partial key and the greedy grouping strat-
egy. Our evaluation shows that SIndex is able to maintain
competitive performance under string workloads using both
synthetic and real-world datasets. SIndex is publicly avail-
able at https://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-
/tree/sindex.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback and suggestions. This work is supported in part
by the National Natural Science Foundation of China (No.
61902242), and the HighTech Support Program from Shang-
hai Committee of Science and Technology (No. 19511121100).
Zhaoguo Wang (zhaoguowang@sjtu.edu.cn) is the corre-
sponding author.

REFERENCES

[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
SIGMETRICS Perform. Eval. Rev. 40, 1, 534AS64. https://doi.org/10.
1145/2318857.2254766

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE jJoint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’12). Association for Computing Machinery, New
York, NY, USA, 533AS64. https://doi.org/10.1145/2254756.2254766
Robert Binna, Eva Zangerle, Martin Pichl, Guinther Specht, and Viktor
Leis. 2018. HOT: A Height Optimized Trie Index for Main-Memory
Database Systems. In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 5214A$534. https://doi.org/10.1145/
3183713.3196896

Philip Bohannon, Peter Mcllroy, and Rajeev Rastogi. 2001. Main-
Memory Index Structures with Fixed-Size Partial Keys. In Proceedings

[2

—

3

—

[4

—

https://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-/tree/sindex
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex/-/tree/sindex
mailto:zhaoguowang@sjtu.edu.cn
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/3183713.3196896

APSys ’20, August 24-25, 2020, Tsukuba, Japan

—
w
[

—_
(=)
—

—
~
—

[10

(11

[12

(13

(14

(15

[16

(17

—

= =

—

—

[t

[l

[

—

—

of the 2001 ACM SIGMOD International Conference on Management of
Data (SIGMOD 4AZ01). Association for Computing Machinery, New
York, NY, USA, 1633AS174. https://doi.org/10.1145/375663.375681
Philip Bohannon, Peter Mcllroy, and Rajeev Rastogi. 2001. Main-
Memory Index Structures with Fixed-Size Partial Keys. SIGMOD Rec.
30, 2 (May 2001), 1634AS$174. https://doi.org/10.1145/376284.375681
Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 209-223.
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do,
Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke,
Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An
Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’20).
Association for Computing Machinery, New York, NY, USA, 9694A5984.
https://doi.org/10.1145/3318464.3389711

Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A
Fully-Dynamic Compressed Learned Index with Provable Worst-Case
Bounds. Proc. VLDB Endow. 13, 8 (April 2020), 11624A$1175. https:
//doi.org/10.14778/3389133.3389135

Edward Fredkin. 1960. Trie Memory. Commun. ACM 3, 9 (Sept. 1960),
4905A$499. https://doi.org/10.1145/367390.367400

Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca,
and Tim Kraska. 2019. FITing-Tree: A Data-Aware Index Structure.
In Proceedings of the 2019 International Conference on Management of
Data (SIGMOD °19). Association for Computing Machinery, New York,
NY, USA, 11894A$1206. https://doi.org/10.1145/3299869.3319860
Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Al-
fons Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline:
A Single-Pass Learned Index. In Proceedings of the Third International
Workshop on Exploiting Artificial Intelligence Techniques for Data Man-
agement (aiDM °20). Association for Computing Machinery, New York,
NY, USA, Article 5, 5 pages. https://doi.org/10.1145/3401071.3401659
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The Case for Learned Index Structures. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD ’18).
Association for Computing Machinery, New York, NY, USA, 4894A$504.
https://doi.org/10.1145/3183713.3196909

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive
radix tree: ARTful indexing for main-memory databases. In 2013 IEEE
29th International Conference on Data Engineering (ICDE). 38—-49. https:
//doi.org/10.1109/ICDE.2013.6544812 ISSN: 1063-6382.

Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-
Tracking and the Dynamics of the News Cycle. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’09). Association for Computing Machinery,
New York, NY, USA, 4974AS506. https://doi.org/10.1145/1557019.
1557077

Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020.
LISA: A Learned Index Structure for Spatial Data. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data
(SIGMOD °20). Association for Computing Machinery, New York, NY,
USA, 21194A52133. https://doi.org/10.1145/3318464.3389703
Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
Craftiness for Fast Multicore Key-Value Storage. In Proceedings of
the 7th ACM European Conference on Computer Systems (EuroSys ’12).
Association for Computing Machinery, New York, NY, USA, 183§A§196.
https://doi.org/10.1145/2168836.2168855

Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska.
2020. Learning Multi-Dimensional Indexes. In Proceedings of the 2020

[18]

[19]

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, Haibo Chen

ACM SIGMOD International Conference on Management of Data (SIG-
MOD °20). Association for Computing Machinery, New York, NY, USA,
985aA51000. https://doi.org/10.1145/3318464.3380579

Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo
Wang, Minjie Wang, and Haibo Chen. 2020. XIndex: A Scalable Learned
Index for Multicore Data Storage. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP °20). Association for Computing Machinery, New York, NY, USA,
3084AS5320. https://doi.org/10.1145/3332466.3374547

Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Or-
dered Index for In-Memory Data Management. In Proceedings of the
Fourteenth EuroSys Conference 2019 (EuroSys ’19). Association for
Computing Machinery, New York, NY, USA, Article 18, 16 pages.
https://doi.org/10.1145/3302424.3303955

https://doi.org/10.1145/375663.375681
https://doi.org/10.1145/376284.375681
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/1557019.1557077
https://doi.org/10.1145/1557019.1557077
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3332466.3374547
https://doi.org/10.1145/3302424.3303955

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Learned Indexes
	2.2 Problem Statement

	3 SIndex
	3.1 Partial Key
	3.2 Greedy Grouping
	3.3 Piecewise Linear Model for the Root
	3.4 Optimization

	4 Evaluation
	4.1 Overall Performance
	4.2 Performance Breakdown

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

