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We answer with the learned index
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) XIndex contribution

« How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically
Two-PHASE COMPACTION for correctness and efficiency
FINE-GRAINED SYNCHRONIZATION for scalability

SOLUTION: adjust the structure at runtime
HEeurisTics for small model errors and buffer sizes

Up to 4.4x better perf than the state-of-the-arts
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1. Buffers all writes separately (e.g., in a B-Tree)
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) Handling writes: Two-Phase Compaction

- OBSERVATION: duplicate records cause
Inconsistency

- IDEA: not to create duplicates during compaction

 METHOD: 2-Phase Compaction — merge, then copy
— Still update in-place and compact asynchronously
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3. COPY PHASE: copy the latest records via pointers
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) Handling writes: range-partitioning

Two-Phase Compaction
Allows efficient read and non-blocking writes

Range-partitioning
Reduces the compaction time

Fine-grained Sync. (see paper)
B Achieves high scalability in high contention

Range-partition data into group nodes
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Model Split Model Merge
to reduce model error to reduce model #
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) Dynamic workloads: controlling buffer size

Group Merge
to reduce group #
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) Dynamic workloads: root maintenance

Root Update

1. Flatten pointer array Model(s)
2. Retfrain models

3. Adjust models (opfional)  Group|ptrs (new)
.




See the paper for

+ Detailed pseudocode
 Fine-grained synchronization protocols
« Optimizations

A proof sketch on linearizability
— Formal proof in the extended version*

*https://ipads.se.sjtu.edu.cn/_media/publications/xindex_extended.pdf



Evaluation

Evaluation Questions

How does Xlndex compare with the state-of-the-arts?
Can real systems benefit from Xindex!?

w 2 sockets, each has 12 2.20GHz cores; 126GB Ram

= Masstree [EuroSys '12], Wormhole [EuroSys '19], baseline learned index
[SIGMOD '18]

= 1:11 background-foreground thread ratio




) Throughput in YCSB
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m XIndex ™ Learned+A ®mWormbhole Masstree

A (Update B (Read mostly) C (Read only) D (Read latest) F (RMW)
heavy)

YCSB Workloads

E (Short ranges)



) Throughput in TPC-C (KV)
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A TPC-C variant for KV store (nho conflicts)
- Simulates workloads of OLTP systems
- 8 warehouses per thread
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) Throughput in TPC-C (KV)
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XIindex

« ML has limitations in data structure design

- To make ML work, we need a systematics approach

— Two-PHASE COMPACTION for correctness and efficiency
— FINE-GRAINED SYNCHRONIZATION for scalability
— STRUCTURE ADJUSTMENT at runtime for stable performance

Open-sourced at
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex
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