XIndex: A Scalable Learned Index
for Multicore Data Storage

Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu

Zhaoguo Wang, Minjie Wang, Haibo Chen

How to build a data structure

"~ _DATA STRUCTURE

 RESERRCHER /

R < IN THE MAKING
\ ~ - ; - /
HAPPY -~

http://www.bobross.com/

How to build a data structure

. LDATASTRUCTURE™
N B IN THE MAKING
" HAPPY & ’

RESEARCHER /

"Gotta have some low latency."

http://www.bobross.com/

How to build a data structure

. LDATASTRUCTURE™
N B IN THE MAKING
" HAPPY & ’

RESEARCHER /

"Gotta have some scalability.”

http://www.bobross.com/

How to build a data structure

. LDATASTRUCTURE™
N B IN THE MAKING
" HAPPY & ’

RESEARCHER /

"Gotta have some consistency.”

http://www.bobross.com/

How to build a data structure

“ _DATA STRUCTURE

s 9. / IN THE MAKING
_RESEARCHER | w /

@ www.bobross.com

"Gotta have some small memory footprint, durability, adaptiveness, ..."

http://www.bobross.com/

How to build a data structure

MEDICORE

. S FDATA STRUCTURE
“UNHAPPY e /
_RESEARCHER | =

http://www.bobross.com/

How to build a data structure

MEDICORE

S e FDATA STRUCTURE
"UNHAPPY &5 /
_ RESEARCHER /=

|
;
{

f

@ Jeff Dean

https://pbs.twimg.com/profile_images/935325968280907776/AcBo6zJc_400x400.jpg
http://www.bobross.com/

How to build a data structure

()

Let's do some
Machine Learning!

N

-

(TTHIT] —

{ e "’J /nnmsrnucruni
“UNHAPPY i /

" RESEARCHER | /

https://pbs.twimg.com/profile_images/935325968280907776/AcBo6zJc_400x400.jpg
http://www.bobross.com/

K . \ &

LESS HERORCHE

Y.

@ LIFE magazine

Expectation

http://blog.modernmechanix.com/how-to-make-father-pop-with-pride/

TER

Essmncnﬁnﬂ
mnm

@ LIFE magazine @ KARRRASKA

Expectation NCE]

http://blog.modernmechanix.com/how-to-make-father-pop-with-pride/
https://karrraska.tumblr.com/post/175370461052/sweet-home

4 I\RESEARCHER" | o ARESERRCHER™
o lhsoine: rolj.nlvu r HEADING FORIL

& 5 T Q_ =) $
= d g "D | T g
* BETTER:PERFORMANCE =
: Aoy =

th .
”m'“ \‘ X pE ,i\,\-\

‘,nummnnc DESIGNAAG: Lo & “

: SELETUNING
W v -"-’f-'f?”f-?fff?-lf’?f-'-'.f:.fff_;i.{:;..;-,-

@ LIFE magazine @ KARRRASKA

Expectation Reality

http://blog.modernmechanix.com/how-to-make-father-pop-with-pride/
https://karrraska.tumblr.com/post/175370461052/sweet-home

) Today's talk

@@ ot

Data Structure Machine Learning
Design

) Today's talk

Question 1 Does ML work?

5 1o}
& €

Data Structure Machine Learning
Design

) Today's talk

Question 1 Does ML work?

Yes, buf not perfectly
7 G

Data Structure Machine Learning
Design

) Today's talk

Question 1 Does ML work?
Yes, but not perfectly

S 95
G ¢

Question 2 How to make ML work?

Data Str
Desi

 Learning

) Today's talk

Question 1 Does ML work?
Yes, but not perfectly

77 5

o} @

Data st;| QUEStion 2 How to make ML work?
Desi Systematic approaches

 Learning

) Today's talk

Question 1 Does ML work?
Yes, but not perfectly

& &
0]
' ?
Data st;| QUEStion 2 How to make ML work:
Desi Systematic approaches

 Learning

We answer with the learned index

) Background: the learned index

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD 18

) Background: the learned index

Key
|

Index
(e.g., B-Tree)

) Background: the learned index

Key
|

Index
(e.g., B-Tree)

Key
|

ML Model

) Background: the learned index

Key
|

Index
(e.g., B-Tree)

) Background: the learned index

Key
|
A
Index
o (e.g., B-Tree)
addr . Y N VN N N
o i[)ata¢7L \\\a
i [DDD ...
> E (11
L

) Background: the learned index

« With contiguously sorted data

addr

A

Key
|

Index
(e.g., B-Tree)

) Background: the learned index

« With contiguously sorted data

addr

A

key

Key
|

Index

Data \/

) Background: the learned index

- With contiguously sorted data,
index functions become simpler

addr

A

key

Key
|

Index

Data \/

) Background: the learned index

1. Sort data, train model with key-address mapping

ML Model

) Background: the learned index

1. Sort data, train model with key-address mapping

<kev l.addr [|>

<key 2.addr 2> >| ML Model
<key 3,addr 3>

) Background: the learned index

1. Sort data, train model with key-address mapping

Train to
overfit the data

(1Y)
<key l.addr [|>

<key 2.addr 2> >| ML Model
<key 3,addr 3>

) Background: the learned index

1. Sort data, train model with key-address mapping

2. Predict addresses with the trained model

Trained :
key > ML Model > | addr

) Background: the learned index

1. Sort data, train model with key-address mapping

2. Predict addresses with the trained model
— Prediction is CLOSE, but NOT PRECISE

Trained :
key > ML Model D [addr

) Background: the learned index

3. Search the correct position Key

|

Trained
ML Model

Data / Pred

) Background: the learned index

3. Search the correct position Key

|

Trained
ML Model

Data / Pred

> 1
search
Actual

) Background: the learned index

3. Search the correct position Key
— Exponential search /
Trained
ML Model

Data / Pred

search
Actual

) Background: the learned index

3. Search the correct position
— Exponential search
— Binary search

Key
|

Trained
ML Model

Data

k////Pred

[[mw]%[]]...

search

) Background: the learned index

3. Search the correct position Key
— Exponential search /
— Binary search Trained
ML Model

Data / Pred
-

Range bounded by (/ search Actual
max/min errors

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD 18

) Background: the learned index

3. Search the correct position Key
— Exponential search /
— Binary search Trained
- ML Model

Data / Pred
-

Range bounded by (/ search Actual
max/min errors

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD 18

) Background: the learned index

3. Search the correct position Key
— Exponential search /
e Trained
Smaller errors ML Model

B ﬂh ff Data[‘/ e i
etter search efficiency M]

Range bounded by (/ search Actual
max/min errors

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD 18

) Background: the learned index

» Multi-stage models learn indexes efficiently

Key
|

ML Model

/
Data [[TITITITITITII -

) Background: the learned index

» Multi-stage models learn indexes efficiently

Key MuIt| -stage Model Arch

.............................. VI
: _‘—N :
ML Model Model | [Model] [Model

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD 18

) Background: the learned index

» Multi-stage models learn indexes efficiently

* Reduce 63% read latency and 99% memory usage

Kfy Multi-stage Model Arch
................................... o
3 _..:—N E

ML Model Model | [Model] [Model

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. SIGMOD 18

) Background: the learned index

Y Multi-stage Model Arch
.................................. A
L ey
ML Model Model | [Model] [Model :

) Background: the learned index

« ISSUE 1 read-only, and non-trivial to support writes
— Takes several seconds to sort millions of records

Kfy Multi-stage Model Arch
................................... o

3 _..:—N E

ML Model Model | [Model] [Model :

) Background: the learned index

« ISSUE 1 read-only, and non-trivial to support writes
— Takes several seconds to sort millions of records

- ISSUE 2 performance degrades in certain workloads
— 23% worse than B-Tree in a specific access pattern

Kfy Multi-stage Model Arch
................................... o

3 _..:—N E

ML Model Model | [Model] [Model :

) Background: the learned index

« ISSUE 1 read-only, and non-trivial to support writes
— Takes several seconds to sort millions of records

- ISSUE 2 performance degrades in certain workloads
— 23% worse than B-Tree in a specific access pattern

Kfy Muldi-stage Model Arch ...
ML Model E Model accuracy differs E

) XIndex contribution

) XIndex contribution

- How to efficiently support writes and concurrency?

) XIndex contribution

- How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically

) XIndex contribution

- How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically
Two-PHASE COMPACTION for correctness and efficiency

) XIndex contribution

- How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically
Two-PHASE COMPACTION for correctness and efficiency
FINE-GRAINED SYNCHRONIZATION for scalability

) XIndex contribution

- How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically
Two-PHASE COMPACTION for correctness and efficiency
FINE-GRAINED SYNCHRONIZATION for scalability

) XIndex contribution

« How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically
Two-PHASE COMPACTION for correctness and efficiency
FINE-GRAINED SYNCHRONIZATION for scalability

SOLUTION: adjust the structure at runtime
HEeurisTics for small model errors and buffer sizes

) XIndex contribution

« How to efficiently support writes and concurrency?

SOLUTION: buffer inserts and compact periodically
Two-PHASE COMPACTION for correctness and efficiency
FINE-GRAINED SYNCHRONIZATION for scalability

SOLUTION: adjust the structure at runtime
HEeurisTics for small model errors and buffer sizes

Up to 4.4x better perf than the state-of-the-arts

) Handling writes: strawman solution

) Handling writes: strawman solution

Model

Data
a:1|b:2

) Handling writes: strawman solution

1. Buffers all writes separately (e.g., in a B-Tree)

Buffer

Model

Data
a:1|b:2

) Handling writes: strawman solution

1. Buffers all writes separately (e.g., in a B-Tree)

put(a,d)
! Buffer

Model

a:0

Data
a:1|b:2

) Handling writes: strawman solution

1. Buffers all writes separately (e.g., in a B-Tree)

put(c, 3)
V' Buffer
Model
a:0
Data %
a:1|b:2

) Handling writes: strawman solution

1. Buffers all writes separately (e.g., in a B-Tree)

2. Periodically compact the buffer

put(c, 3)
Y Buffer
Model
a:0
Data %
a:1|b:2
N\ N J

a:0|b:2|c:3

) Handling writes: strawman solution

1. Buffers all writes separately (e.g., in a B-Tree)

2. Periodically compact the buffer

Buffer

Model

Data
a:0|b:2(c:3

) Handling writes: strawman solution

1. Buffers all writes separately (e.g., in a B-Tree)

2. Periodically compact the buffer and retrain the

model
Buffer

Model'

Data
a:0|b:2(c:3

) Handling writes: strawman solution

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

Buffer

Model

a:0

Data
a:1|b:2

c:3

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

get(a)
¢ Buffer
Model
a:0
Data o3
a:1|b:2

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

get(a) a=1
J) Buffer
Model
a:0
Data o3
a:1|b:2

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

Buffer

Model

a:0

Data
a:1|b:2

c:3

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

get
@) Buffer
Model
a:0
Data o3
a:1|b:2

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

get
@) Buffer
Model 2
a:0
Data o3
a:1|b:2

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup
— More than 100% slow down

get
@) Buffer
Model 9
a:0
Data o3
a:1|b:2

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

« ISSUE 2: Compaction blocks writes to avoid races

put
X Buffer
Model
a:0
Data %
a:1|b:2
_ J
Y

a:0|b:2|c:3

) Handling writes: strawman solution

- ISSUE 1: Reads get slower, due to buffer lookup

« ISSUE 2: Compaction blocks writes to avoid races

— Up to 30+ seconds put
X Buffer
Model
a:o
Data %
a:1|b:2
_ J
Y

a:0|b:2|c:3

) Handling writes: improving strawman

) Handling writes: improving strawman

1. Avoid buffer lookups for reads

Buffer

Model

Data
a:1|b:2

) Handling writes: improving strawman

1. Avoid buffer lookups for reads
— By performing updates in-place

Buffer

Model

Data
a:1|b:2

) Handling writes: improving strawman

1. Avoid buffer lookups for reads
— By performing updates in-place

put(a,0)
J Buffer

Model

Data
a:0|b:2

) Handling writes: improving strawman

1. Avoid buffer lookups for reads
— By performing updates in-place

Buffer

Model

Data
a:0|b:2

) Handling writes: improving strawman

1. Avoid buffer lookups for reads
— By performing updates in-place

get(a)
¢ Buffer

Model

Data
a:0|b:2

) Handling writes: improving strawman

1. Avoid buffer lookups for reads

— By performing updates in-place
get(a) a=0
y) Buffer
Model

Data
a:0|b:2

) Handling writes: improving strawman

1. Avoid buffer lookups for reads

— By performing updates in-place, and buffering only
Insertions out(c,3)

J Buffer

Model |

Data c:$

a:0|b:2

) Handling writes: improving strawman

2. Avoid blocking writes

Buffer

Model

Data c:$

a:0|b:2

) Handling writes: improving strawman

2. Avoid blocking writes
— By compacting asynchronously

Buffer

Model

Data c:$

a:0|b:2
Back d thread
\Background th)

a:0|b:2|c:3

) Handling writes: improving strawman

2. Avoid blocking writes

— By compacting asynchronously, and using a temporary
buffer

Buffer Temp Buffer

Model

Data c:$

a:0|b:2
\ back dt a/
acC groun Nrea

a:0|b:2|c:3

) Handling writes: improving strawman

2. Avoid blocking writes

— By compacting asynchronously, and using a temporary
buffer

put(d,4)
! Buffer Temp Buffer
Model |— -
Data c:3 d:4
a:0|b:2

Background thread
;QW__J

a:0|b:2|c:3

) Handling writes: improving strawman

2. Avoid blocking writes

— By compacting asynchronously, and using a temporary
buffer

Buffer

Model

Data d:4

a:0|b:2(c:3

) Handling writes: improving strawman

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Buffer Temp Buffer

Model

Data c:$

a:0|b:2

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction
merge-sonrt

out(b,8) > OK Buffer Temp Buffer

Model

Data c:$

a:0|b:2

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction
merge-sonrt

out(b,8) > OK Buffer Temp Buffer

Model

Data c:$

a:0|b:2
\ back dt a/
C groun Nrea

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction

merge-sonrt
| copy <a, 0>
| copy <b,2>
put(b,B8) > OK roopy e Buffer Temp Buffer
Model
Data c:$
a:0|b:2

Background thread
;QW__J

a:0|b:2|c:3

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction

merge-sonrt

| copy <a, 0>

| copy <b,2> pUt(b,@)
out(b,8) > OK Freopy <€, %> | Buffer Temp Buffer

Model
Data c:3
a:0|b:0

Background thread
;QW__J

a:0|b:2|c:3

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction

merge-sonrt

| copy <a, 0>

| copy <b,2> pUt(b,@)
out(b,8) > OK Freopy <€, %> | Buffer Temp Buffer

Model
Data c:3
a:0|b:0

Background thread
;QW__J

a:0|b:2|c:3

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction
merge-sonrt

| copy <a, 0>
| copy <b,2>

+-copy <c, 3> Buffer

update array Model

put(b,0) > OK

Data
a:0|b:21c:3

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction
merge-sonrt

| copy <a, 0>
| copy <b,2>

+-COpYy <C,3> BUffer

update array Model

put(b,0) > OK

Data
a:0|b:21c:3

keeps stale value (b=2)

) Handling writes: improving strawman

« CONSISTENCY ISSUE: Updates are lost!

Worker Compaction
merge-sort
| oop 2% get(b) b=2
put(b,8) > OK reopy <e, > | t Buffer
get(b) > b=2 update array Model
Data
a:0(b:2]c:3

keeps stale value (b=2)

) Handling writes: the challenge

» How to efficiently and correctly handle writes?

) Handling writes: the challenge

» How to efficiently and correctly handle writes?

Cannot slow down reads Q/

Vv

) Handling writes: the challenge

» How to efficiently and correctly handle writes?

Cannot slow down reads Q/
Cannot block writes g/

) Handling writes: the challenge

» How to efficiently and correctly handle writes?

Cannot slow down reads Q/

Cannot block writes

/

Must retain all updates)X

) Handling writes: the challenge

» How to efficiently and correctly handle writes?

Cannot slow down reads Q/

Cannot block writes

/

Must retain all updates)X

U

Two-Phase Compaction

) Handling writes: Two-Phase Compaction

) Handling writes: Two-Phase Compaction

- OBSERVATION: duplicate records cause
Inconsistency

) Handling writes: Two-Phase Compaction

- OBSERVATION: duplicate records cause
Inconsistency

- IDEA: not to create duplicates during compaction

) Handling writes: Two-Phase Compaction

- OBSERVATION: duplicate records cause
Inconsistency

- IDEA: not to create duplicates during compaction

 METHOD: 2-Phase Compaction — merge, then copy

) Handling writes: Two-Phase Compaction

- OBSERVATION: duplicate records cause
Inconsistency

- IDEA: not to create duplicates during compaction

 METHOD: 2-Phase Compaction — merge, then copy
— Still update in-place and compact asynchronously

) Handling writes: Two-Phase Compaction

Buffer

Model

c:3

Data
a:0|b:2

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers

Buffer Temp Buffer

Model

Data c:$

a:0|b:2

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers

Worker Compaction
merge-sort

put(b,B8) > OK Buffer Temp Buffer
Model

Data c:$
a:0|b:2

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers

Worker Compaction
merge-sort

put(b,B8) > OK Buffer Temp Buffer
Model

Data c:$

a:0|b:2
\ back dt a/
acC groun Nrea

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers

Worker Compaction
merge-sort
| -ref <b,2>
put(b,B8) > OK Buffer Temp Buffer
Model
Data o
a:0|b:2
\Background thread’
a:ptr, | b:ptr, | ciptr,

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers

Worker Compaction

merge-sort
|-ref <b,2>
put(b,8) > OK Buffer Temp Buffer
Model

Data C;3

a:0|b:2

A Backgiound thready

a:ptr, [b:ptr, [ciptre

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers

Worker Compaction
merge-sort put(b, @)
| -ref <b,2> ll

put(b,B8) > OK Buffer Temp Buffer

Model

Data ¢ A 5

a:0(b:0
:.-‘ME'OH{\dt’\read/

a:ptr, | b:ptr, | ciptr,

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers,
update data array, and retrain model

Worker Compaction
merge-sort
| -ref <b,2>
put(b,B8) > OK Buffer Temp Buffer
Model

Data C;3

a:0|b:0

AU Backg¥ou r}oﬁ nread’ :

a:ptr, | b:ptr, | ciptr,

) Handling writes: Two-Phase Compaction

1. MERGE PHASE: merge-sort records on pointers,
update data array, and retrain model

Worker Compaction
merge-sort
| -ref <b,2>
put(b,0) > OK Buffer

update array

Old Data “—0Id Buffer

) Handling writes: Two-Phase Compaction

2. WAIT: use RCU* barrier to ensure no direct access

to old data/buffer

Worker

put(b,0) > OK

Compaction
merge-sort
| -ref <b,2>

update array

Buffer

Old Data

Old Buffer

*RCU stands for Read-Copy-Update

) Handling writes: Two-Phase Compaction

2. WAIT: use RCU* barrier to ensure no direct access

to old data/buffer

Worker

put(b,0) > OK

Compaction
merge-sort
| -ref <b,2>

Buffer

update array
Model’
T Data
\X\ a:ptr, | b:ptr, c:p."crC
Old Data ~-01b:0

Old Buffer

*RCU stands for Read-Copy-Update

) Handling writes: Two-Phase Compaction

3. COPY PHASE: copy the latest records via pointers

Worker Compaction
merge-sort
| -ref <b,2>
put(b,8) > OK Buffer
update array

copy reconrds Model'

Old Data[=T “—0ld Buffer

) Handling writes: Two-Phase Compaction

3. COPY PHASE: copy the latest records via pointers

Worker Compaction
merge-sort
| -ref <b,2>

put(b,8) > OK Buffer
update array
copy records Model'

Data
a:0 b:ptr, | Cciptr,
et
Old Data , “— 0ld Buffer

) Handling writes: Two-Phase Compaction

3. COPY PHASE: copy the latest records via pointers

Worker Compaction
merge-sort
| -ref <b,2>
put(b,8) > OK Buffer
update array

copy reconrds Model'
|-copy <b, 0>

Data
a:0 b:0 c:ptr,

Old Buffer

) Handling writes: Two-Phase Compaction

3. COPY PHASE: copy the latest records via pointers

Worker Compaction
merge-sort
| -ref <b,2>
put(b,8) > OK Buffer
update array

copy reconrds Model'
|-copy <b, 0>

Data
a:0 b:0 C:3

keeps latest value (b=0)

) Handling writes: Two-Phase Compaction

3. COPY PHASE: copy the latest records via pointers

Worker Compaction
merge-sort get(b) b=2
| -ref <b,2>
put(b,0) > OK v 1 Buffer
update array

copy reconrds Model'
|-copy <b, 0>

et(b) > b=0
J Data

a:0 b:0 C:3

keeps latest value (b=0) Old Buffer

) Handling writes: Two-Phase Compaction

Cannot slow down reads Q/

Cannot block writes Q/
Must retain all updates %

) Handling writes: Two-Phase Compaction

Cannot slow down reads Q/

Cannot block writes Q/
Must retain all updates M

) Handling writes: range-partitioning

Buffer

) Handling writes: range-partitioning

Buffer

sz=1000

) Handling writes: range-partitioning

Groupi-l
Model
o Buffer
N sz=10
Dqta

Groupi
Model
o Buffer
T | sz=10
[)qta

Range-partition data into group nodes

Groupi+l
Model
o Buffer
T | sz=10
D'cllta

) Handling writes: range-partitioning

_(_EIS’_E'J?__'__l_ __________
Model
o Buffer
N sz=10
Dqta

Grouia Iptlré

._.-.
°® . o
oooo

Groupi
Model i
oce Buffer i

T | sz=10 :
Data :

Range-partition data into group nodes

_(_5_[‘?_‘_‘_9__'_”2_1_ _________
Model
o Buffer
T | sz=10
Dqta

) Handling writes: range-partitioning

.------

Buffer

sz=10

Range-partition data into group nodes

Grouia ptrs

0wl ¢ w0

. N —

Groupi
Model
o Buffer
T | sz=10
[)qta

Buffer

sz=10

) Handling writes: range-partitioning

Two-Phase Compaction
Allows efficient read and non-blocking writes

Range-partitioning
Reduces the compaction time

Fine-grained Sync. (see paper)
B Achieves high scalability in high contention

Range-partition data into group nodes

) Dynamic workloads: the problem

--

--

) Dynamic workloads: the problem

--

| Model .| Model §

\| err=10 || Buffer |1 i|err=1000 || Buffer |:

5k PR ;
Group | Group]

Large model error Small model error

) Dynamic workloads: the problem

get/put return in

(only access array) 10ns
V t
| Model .| Model §
\| err=10 || Buffer |1 i|err=1000 || Buffer |:
(5L B ;
Group | Group |

Large model error Small model error

) Dynamic workloads: the problem

get/put return in get/put return in
(only access array) 10ns (only access array) | 0s
| t | t
'| Model ' i| Model i
| err=10 Buffer |1 1| err=1000 || Buffer |
T T] L T i
[[Data i Deta =
Group | Group |

Large model error Small model error

) Dynamic workloads: the problem

--

| Model .| Model §
| err=10 Buffer |1 1| err=1000 || Buffer |
i s7=1000 || ! s2=10 ||
| [Daea - i[| Dt i
Group | Group]

Large model error/buffer size Small model error/buffer size

) Dynamic workloads: the problem

get/put return in
(access array+buf) | Ons + |0s

! t
| Model ' | Model §
i| err=10 || Buffer |1 i|err=1000 || Buffer |:
i s7=1000 || ! s2=10 ||
| [Daea - i[| Dt i
Group | Group]

Large model error/buffer size Small model error/buffer size

) Dynamic workloads: the problem

get/put return in get/put return in
(access array+buf) |Ons + 10s (access array+buf) |10s + 10ns

| t | t

| Model .| Model §
| err=10 Buffer |1 1| err=1000 || Buffer |
i s7=1000 || ! s2=10 ||
| [Daea - i[| Dt i
Group | Group]

Large model error/buffer size Small model error/buffer size

) Dynamic workloads: controlling errors

Model Split Model Merge

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error
Model
err=1000
AL
4 Indexes A\

~ !
Data

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error
Model
err=1000
AL
4 Indexes A\

~ !
Data

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error

Model Model
err=1000 | err=1000

A A
 Indexes Y Indexes \

~ !
Pata

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error

Model Model

err=10 err=10

A A
 Indexes Y Indexes \

~ !
Pata

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error

Model Model

err=10 err=10

A A
 Indexes Y Indexes \

~ !
Pata

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error to reduce model #
Model Model Model Model
err=10 err=10 err=10 err=10
A AL A AL
 Indexes Y Indexes Indexes Y Indexes)\

~ ! ~ !
PData Data

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error to reduce model #
Model Model Model
err=10 err=10 err=10
AL AL A
 Indexes Y Indexes \ r Indexes A\

~ ! ~ !
PData Data

) Dynamic workloads: controlling errors

Model Split Model Merge
to reduce model error to reduce model #
Model Model Model
err=10 err=10 err=20
AL AL A
 Indexes Y Indexes \ r Indexes A\

~ ! ~ !
PData Data

) Dynamic workloads: controlling buffer size

Group Split
to reduce model error and buffer size

NERR
Models
L L |

) Dynamic workloads: controlling buffer size

Group Split
to reduce model error and buffer size

VERR
Models
L L1 |

) Dynamic workloads: controlling buffer size

Group Split
to reduce model error and buffer size

VERR
Models
L L1 |

) Dynamic workloads: controlling buffer size

Group Split
to reduce model error and buffer size

| Mowels | Models §
E—I—!—' Buffer | | i L Buffer i
| | Data | | Data i

! L !

) Dynamic workloads: controlling buffer size

Group Split
to reduce model error and buffer size

| Motels | Models §
E—I—!—' Buffer | | i L Buffer i
| | Data | | Data i

! L !

) Dynamic workloads: controlling buffer size

Group Merge
to reduce group #

i Models i i MolclellsI i
E | Buffer i i L1 Buffer i
| | Data | | Data i

] L]

) Dynamic workloads: controlling buffer size

Group Merge
to reduce group #

NERR
Models
ULl

) Dynamic workloads: root maintenance

Model(s)
R
. Group| -1 | Group1 | .Group|+1'
.................. S —— | L e e ccc e e e

) Dynamic workloads: root maintenance

Model(s)
AT
. Groupl -1 . Group |+1 . Group|+2

) Dynamic workloads: root maintenance

Model(s)

G it
i Groupl -1 ;Group|+1 ' NULL
5 Groupi1 |

) Dynamic workloads: root maintenance

Root Update

1. Flatten pointer array Model(s)

) Dynamic workloads: root maintenance

Root Update

1. Flatten pointer array Model(s)
2. Retfrain models

Group ptrs (new)
' Group i-1 ' Group i iGroupi+1§

) Dynamic workloads: root maintenance

Root Update

1. Flatten pointer array Model(s)
2. Retfrain models

3. Adjust models (opfional) Group|ptrs (new)
.

See the paper for

+ Detailed pseudocode
 Fine-grained synchronization protocols
« Optimizations

A proof sketch on linearizability
— Formal proof in the extended version*

*https://ipads.se.sjtu.edu.cn/_media/publications/xindex_extended.pdf

Evaluation

Evaluation Questions

How does Xlndex compare with the state-of-the-arts?
Can real systems benefit from Xindex!?

w 2 sockets, each has 12 2.20GHz cores; 126GB Ram

= Masstree [EuroSys '12], Wormhole [EuroSys '19], baseline learned index
[SIGMOD '18]

= 1:11 background-foreground thread ratio

) Throughput in YCSB

140

120

Throughput (MOPS)
2 5 3 8 8

)

m XIndex ™ Learned+A ®mWormbhole Masstree

A (Update B (Read mostly) C (Read only) D (Read latest) F (RMW)
heavy)

YCSB Workloads

E (Short ranges)

) Throughput in TPC-C (KV)

Throughput (MOPS)
— — P
a1 —_ a1 N a1

O

A TPC-C variant for KV store (nho conflicts)
- Simulates workloads of OLTP systems
- 8 warehouses per thread

(a)

4 8 12 16 20
of threads

24

) Throughput in TPC-C (KV)

- Masstree

2.5
a2
e Masstree
51‘5 \'
v
=
Q.
=
oy 1
=
o
| -
=
= 0.5

0

0 4 8 12 16

of threads

) Throughput in TPC-C (KV)

Y&Learned+A -E-Masstree

N
Ul

N

—_
a1

—

Throughput (MOPS)

e
)

Asynchronous compaction
w/o in-place upiites/_/'/.
4)<
\%b &= =3¢
/;6/4).%/

O

(a)

4 8 12 16 20 24
of threads

) Throughput in TPC-C (KV)

®-XIndex €Learned+A <E-Masstree

2.5
. /
: 67% better I
3
§-15
o 1
5)
E 05 —¢

" 0 4 8 12 16 20 24

of threads

XIindex

« ML has limitations in data structure design

- To make ML work, we need a systematics approach

— Two-PHASE COMPACTION for correctness and efficiency
— FINE-GRAINED SYNCHRONIZATION for scalability
— STRUCTURE ADJUSTMENT at runtime for stable performance

Open-sourced at
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex

https://ipads.se.sjtu.edu.cn:1312/opensource/xindex

