
Ad Hoc Transactions in Web Applications:
The Good, the Bad, and the Ugly

Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu
Binyu Zang, Haibing Guan, Haibo Chen

How do applications today use
concurrency control?
The intuitive answer, database transactions.

1

DB

ORM layer

Begin Transaction;
the actual work
Commit Transaction;

App server

How do applications today use
concurrency control?
The intuitive answer, database transactions.

2

DB

ORM layer

Begin Transaction;
the actual work
Commit Transaction;

App server

obj = ORM.getX(id)
=> Select * From …

obj.save()
=> Update/Insert/…

How do applications today use
concurrency control?
The intuitive answer, database transactions.
Bailis et al. identified another application-level
approach, invariant validation*.
• Developers specify invariants; ORMs validate them.

• E.g., uniqueness of a column’s values (w/o using DB unique
constraint).

3*Bailis et al. Feral Concurrency Control: An Empirical Investigation of Modern Application Integrity. SIGMOD ’15.

How do applications today use
concurrency control?
In this study, we investigate the third
approach, ad hoc transactions.
• They are the “transactions” coordinated by ad hoc constructs

(e.g., locks) employed by app developers.

4

App server (add-cart API)
lock(cart_id)
perform business logic
use ORM to access DB
unlock(cart_id)

cart locked
1 true
2 false

Server-side lock table

Plain Select/Update/Insert/Delete
(without DB transactions)DB

Example is simplified from the Broadleaf e-commerce application.

Ad hoc transactions represent
the third approach

What is the state of the practice?

5

Database
transactions

Invariant
validation

Ad hoc
transactions

WHAT is
protected?

Business logic
snippets

Invariants on
Database rows

Business logic
snippets

WHO conducts
the protection? Database CC ORMs Developers

6

Ruby/Active Record

Python/Django

Java/Hibernate

7

Social net
24.6k 🌟

Forum
33.8k 🌟

E-commerce
11.4k 🌟

E-commerce
13.9k 🌟

Project mgmt
4.2k 🌟

E-commerce
1.5k 🌟

Access ctrl
16.8k 🌟

Supply chain
1.5k 🌟

8

Social net
24.6k 🌟

Forum
33.8k 🌟

E-commerce
11.4k 🌟

E-commerce
13.9k 🌟

Project mgmt
4.2k 🌟

E-commerce
1.5k 🌟

Access ctrl
16.8k 🌟

Supply chain
1.5k 🌟

Ad hoc transactions are common in web
applications and they serve critical roles.
• 91 cases among 8 popular open-source web apps.
• 71 of them reside in critical APIs (e.g., cart, check-out).

In the rest of this talk
Answer the following questions.
• How do ad hoc transactions look like?

• Are they correct?

• Do they perform well?

Discuss the implications.

9

They look diverse in many aspects.

More than half are incorrect.

They sometimes outperform DB transactions.

Ad hoc transactions have
diverse semantics
They can coordinate DB operations partially.
• 22/91 cases coordinate partially.

10

Clothing

Shirt A Shirt B

S M L XLSKU

Product

Category

lock(sku_id)
sku = ORM.getSku(sku_id)
if sku.qty > want:
sku.qty -= want
sku.save()

unlock(sku_id)

Update sku.qty # SKUs table
Update sku.prod.update_time # Products table
for category in sku.prod.cats:
Update category.update_time # Categories table

lock(sku_id)

unlock(sku_id)

Example is simplified from the Spree e-commerce application.

Ad hoc transactions have
diverse semantics
They can coordinate DB operations partially.
• 22/91 cases coordinate partially.

11

Clothing

Shirt A Shirt B

S M L XLSKU

Product

Category

w

w

r
w

r
w

w

w

lock(sku_id)
sku = ORM.getSku(sku_id)
if sku.qty > want:
sku.qty -= want
sku.save()

unlock(sku_id)

Update sku.qty # SKUs table
Update sku.prod.update_time # Products table
for category in sku.prod.cats:
Update category.update_time # Categories table

User 1 buys a small shirt A
User 2 buys a large shirt A
Only SKU ops are serialized!

lock(sku_id)

unlock(sku_id)

Example is simplified from the Spree e-commerce application.

Ad hoc transactions have
diverse semantics
Their coordination can span many requests.
• 10/91 cases coordinate across multiple requests.

12

post = ORM.getPost(post_id)
return render(post)initial req

rendered post &

its version

new content &old version
ok/failure

lock(post_id)
current = ORM.getPost(post_id)
if current.ver != prev_version:
current.content = new_content
current.ver += 1
current.save()

unlock(post_id)

Begin Transaction

Commit Transaction

edit locally

Editing
my post

Example is simplified from the Discourse forum application.Example is simplified from the Discourse forum application.

Ad hoc transactions have
diverse semantics
Their coordination can span many requests.
• 10/91 cases coordinate across multiple requests.

13

post = ORM.getPost(post_id)
return render(post)initial req

rendered post &

its version

new content &old version
ok/failure

lock(post_id)
current = ORM.getPost(post_id)
if current.ver != prev_version:
current.content = new_content
current.ver += 1
current.save()

unlock(post_id)

Begin Transaction

Commit Transaction

edit locally

DB

How to track
connection?

Editing
my post

Example is simplified from the Discourse forum application.Example is simplified from the Discourse forum application.

Ad hoc transactions have
diverse semantics
Their coordination can span many requests.
• 10/91 cases coordinate across multiple requests.

14

post = ORM.getPost(post_id)
return render(post)initial req

rendered post &

its version

new content &old version
ok/failure

lock(post_id)
current = ORM.getPost(post_id)
if current.ver != prev_version:
current.content = new_content
current.ver += 1
current.save()

unlock(post_id)

Begin Transaction

Commit Transaction

edit locally

DB

How to track
connection?

Editing
my post

Example is simplified from the Discourse forum application.Example is simplified from the Discourse forum application.

Ad hoc transactions have
diverse semantics
They can also coordinate non-DB operations.
• 8/91 cases handle non-DB operations.

15

lock(post_id)
post = new Post(...)
post.save()
REDIS.add_to_zset(
“timeline:”+ follower_id, post_id)

unlock(post_id)

DB

Redis
(14, 21/9/20 23:59:59)
(...)

post_id
(sort order)

add_time
“timeline:xx”:

“timeline:yy”: ...

id content
14 foo

… …

Post table

Example is simplified from the Mastodon social network application.

Ad hoc transactions have
diverse implementations
They use either locks or validation procedures
for coordination.
For locks, there are 7 different
implementations among 8 applications.
• 2 implementations reuse existing locking facilities.

16

store = loadStoreInfo(...)
synchronized(store) # Java keyword
{ /* perform work here */ }

Example is simplified from the SCM Suite supply chain management application.

Ad hoc transactions have
diverse implementations
They use either locks or validation procedures
for coordination.
For locks, there are 7 different
implementations among 8 applications.
• 2 implementations reuse existing locking facilities.
• 2 implementations store lock information in Redis.

17

REDIS.set_if_not_exist(lock_key)
perform work here
REDIS.delete(lock_key)

lock_key value

“post66” {owner :xx,
expire:yy}

… …

Redis

Example is simplified from the Mastodon social network application.

Ad hoc transactions have
diverse implementations
They use either locks or validation procedures
for coordination.
For locks, there are 7 different
implementations among 8 applications.
• 2 implementations reuse existing locking facilities.
• 2 implementations store lock information in Redis.
• 1 implementation stores lock information in DB tables.

• 2 implementations store lock information in application
runtime containers (e.g., Java’s ConcurrentHashMap).

18

Ad hoc transactions have
diverse implementations
They use either locks or validation procedures
for coordination.
For locks, there are 7 different
implementations among 8 applications.
For validation procedures, there are also 2
categories.
• ORMs can generate some according to annotations. (4 apps)

• Developers also implement the others from scratch. (3 apps)
• They need to ensure the check-and-update atomicity.

19

How do ad hoc transactions
look like?
They have diverse semantics.
• Partial coordination.
• Multi-request coordination.
• Coordinating non-DB operations.
They have diverse implementations.
• 7 for locks and 2 for validation.
They coordinate at diverse granularity.
• Customized with developers’ domain knowledge.
• Either coarser or finer than DB transactions.
They handle failure differently.
• Usually simpler than DB transactions.

20

Are ad hoc transactions correct?

69 correctness issues are found in 53 cases.*
• 33 cases’ issues are confirmed by developers.

We consider 28 of them severe.

21

App. Known severe consequences Cases

Discourse Overwritten post contents, page rendering failure,
excessive notifications. 6

Mastodon Showing deleted posts, corrupted account info.,
incorrect polls. 4

Spree Overcharging, inconsistent stock level, inconsistent
order status, selling discontinued products. 9

Broadleaf Promotion overuse, inconsistent stock level,
inconsistent order status, overselling. 6

Saleor Overcharging. 3

*Some cases suffer from multiple issues.

Majority of issues stem from
wrong locking/validation primitives
36/65 lock-based ad hoc transactions wrongly
implement or use locking primitives.

22Example is simplified from the Discourse forum application.

post = loadPost(post_id)
lock(post.id)
process user’s changes
ORM.save(post)
unlock(post.id)

access control, etc.
return ORM.getPost(post_id)

critical
section

Example is simplified from the Discourse forum application.

36/65 lock-based ad hoc transactions wrongly
implement or use locking primitives.
11/26 validation-based ad hoc transactions
failed to ensure check-and-update atomicity.

23

ORM.transaction:
ok = MiniSql.query(
Update Posts Set version=version+1
Where id=id And version=version)

if not ok:
ORM.abort_transaction()

perform updates here

Example is simplified from the Discourse forum application.

Majority of issues stem from
wrong locking/validation primitives

36/65 lock-based ad hoc transactions wrongly
implement or use locking primitives.
11/26 validation-based ad hoc transactions
failed to ensure check-and-update atomicity.

24

ORM.transaction:
ok = MiniSql.query(
Update Posts Set version=version+1
Where id=id And version=version)

if not ok:
ORM.abort_transaction()

perform updates here

MiniSql

MiniSql is independent of the ORM, thus
issuing Update outside of the DB transaction.

Example is simplified from the Discourse forum application.

Majority of issues stem from
wrong locking/validation primitives

Developers sometimes wrongly
employ ad hoc transactions
16 issues are caused by incorrect scopes.
• Developers might omit critical operations from coordination

in existing ad hoc transactions. (11 cases)

• Developers might forget to employ ad hoc transactions for
conflicting procedures. (5 cases)

4 issues are caused by incorrect failure
handling.
• E.g., crash during ad hoc transactions introduce invalid

intermediate states that cause user blocking after reboot.

25

Do ad hoc transactions perform
well?
We deployed the applications and evaluated a
subset of APIs with synthetic workloads.
• In comparison with codebase modified to use DB

transactions.

26

0.7x ⬆

0.4x ⬆

0.4x ⬆

1.3x ⬆

0

50

100

150

200

250

300

API 1 API 2 API 3 API 4

API throughput (req/s)
(w/ contention)

0

100

200

300

400

API 1 API 2 API 3 API 4

API throughput (req/s)
(w/o contention)

They use customized
coordination granularities

Study summary
How do ad hoc transactions look like?
• They look diverse in semantics, implementation,

coordination granularities, and failure handling.

Are they correct?
• More than half are incorrect; many issues are severe.

Do they perform well?
• They can outperform DB transactions under contention.

27

What does it imply?
Why do developers not use DB transactions?
• DB transactions lack important functionalities/properties?
• DB transactions need better integration with applications?

• Or applications are fine with relaxed ACID semantics?

What should we do?
• Further investigate why developers use ad hoc transactions.

• Explore new concurrency abstraction to better suit
applications today.

• Build tools to improve existing applications that rely on ad
hoc transactions.

28

Conclusion
Ad hoc transactions are a common approach
to concurrency control in web applications.
• They have unique and diverse characteristics in their design

and implementation.
• They usually have correctness issues due to their ad hoc

nature.

• They have the potential to improve application performance
in specific cases.

Their existence presents great opportunities
for improving real-world DB applications.

29

