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ABSTRACT
Many transactions in web applications are constructed ad hoc in

the application code. For example, developers might explicitly use

locking primitives or validation procedures to coordinate critical

code fragments. We refer to database operations coordinated by

application code as ad hoc transactions. Until now, little is known
about them. This paper presents the first comprehensive study on

ad hoc transactions. By studying 91 ad hoc transactions among 8

popular open-source web applications, we find that (i) every studied

application uses ad hoc transactions (up to 16 per application), 71 of

which play critical roles; (ii) compared with database transactions,

concurrency control of ad hoc transactions is much more flexible;

(iii) ad hoc transactions are error-prone—53 of them have correct-

ness issues, and 33 of them are confirmed by developers; and (iv)

ad hoc transactions have the potential to improve performance in

contentious workloads by utilizing application semantics such as

access patterns. Based on the findings, we discuss the implications

of ad hoc transactions to the database research community.
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1 INTRODUCTION
Today, web applications often use database systems to persist large

amounts of data, necessitating the coordination of concurrent data-

base operations for correctness. One common approach is using
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database transactions. Transactions isolate concurrent database

operations by encapsulating them into individual units of work.

Another widely adopted approach is using the invariant valida-

tion APIs provided by object-relational mapping (ORM) frame-

works (e.g., the validates keyword from Active Record [69]). With

such APIs, developers explicitly specify invariants, such as the

uniqueness of column values, in the application code and the ORM

frameworks report errors on invariant violations. So far, much

work has been done to investigate and improve these two ap-

proaches [4, 5, 16, 21, 25, 42, 43, 53, 68, 82, 84].

However, besides these approaches, application developers are

also accustomed to coordinating critical database operations ad hoc.

Specifically, developers might explicitly use locking primitives and

validation procedures to implement concurrency control (CC), e.g.,

optimistic concurrency control (OCC), amid the application code

to coordinate critical database operations. We refer to such ad hoc

coordination of database operations as ad hoc transactions. Devel-
opers’ comments suggest that they implement ad hoc transactions

for flexibility or efficiency [15].

Figure 1 shows three real-world examples of ad hoc transactions

from open-source web applications, Broadleaf [10], Mastodon [75],

and Discourse [12]. In each example, the application code uses ORM

frameworks to issue database operations and uses ad hoc constructs

to coordinate them. The first two directly use locks for coordina-

tion, while the third one implements a validation-based protocol

similar to OCC. As shown in the examples, ad hoc transactions are

usually coupled with business logic, thus bringing difficulties to a

thorough investigation. As a result, there have been few studies

on ad hoc transactions. Neither their roles in web applications nor

their characteristics are clearly understood.

We spent five person-years conducting a comprehensive study

over 91 ad hoc transactions in 8 web applications of various cate-

gories, including e-commerce, social network, forum, project man-

agement, access control, and supply chain management (Table 2).

These applications are, measured by GitHub stars, the most popular

ones in respective categories and developed in different languages

(Java, Ruby, or Python) using different ORM frameworks (Hiber-

nate [71], Active Record [69], and Django [20]). Our study aims to

understand the characteristics of ad hoc transactions in existing

web applications and their implications. Briefly, we have revealed

the following interesting, alarming, and perceptive findings.

(i) Every studied application uses ad hoc transactions on critical
APIs. Specifically, 71/91 ad hoc transactions are on the critical APIs

in the studied web applications (Table 3). For example, there are 37

ad hoc transactions across 3 e-commerce applications. 31 ad hoc
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lock_map.acquire(cart_id)

App-side map
cart locked
1 true
… …

id total
1 $38
… …

qty
2
3

cart
1
1
… …

$
7
8
…

DB table: Carts & Items

cart := ORM.getCart(cart_id)
items := cart.getItems()
items.append(new_item)
cart.total := cal(items)
ORM.save(items)
ORM.save(cart)
lock_map.release(cart_id)

(a) Ensuring consistent cart totals.

id redeems
1 10
… …

DB table: Invites
max
12
…

key value
"redeem1" true

… …

Redis KV

lock_key := "redeem"+invite_id
REDIS.set_if_not_exist(lock_key)
invite := ORM.getInvite(invite_id)
if invite.redeems<invite.max:
  invite.redeems += 1
  ORM.save(invite)
REDIS.delete(lock_key)

(b) Avoiding excessive invitation usage.

while true:
  poll := ORM.getPoll(poll_id)

ORM.exec(  succes := 
    Update Poll
    Set tallies=poll.tallies, ver=ver+1
    Where id=poll_id And ver=poll.ver)

  poll.tallies[choice] += 1

id tallies
1 {1:10,2:12}
… …

DB table: Polls
ver
110
…

 And ver=poll.ver) 
, ver=ver+1

  if succes: break

(c) Ensuring accurate poll statistics.
Figure 1: Ad hoc transaction examples. Coordinated DB accesses are shaded yellow; ad hoc constructs are shaded green.

transactions are in critical APIs such as check-out, payment and

add-cart to coordinate operations on critical data (e.g., user credits).

(ii) Ad hoc transactions’ usages and implementations are much
more flexible than database transactions. For example, 58 cases use a

single, fine-grained lock to coordinate multiple database operations.

At first glance, we suspected that these cases have missed necessary

coordination and are thus incorrect. However, after checking these

cases in-depth, we found that not all operations require coordi-

nation. One reason is that some objects are always associatively

accessed so that a single lock is sufficient for correctness.

(iii) Ad hoc transactions are prone to errors. Ad hoc transactions’

flexibility comes at a cost—53 cases of ad hoc transactions mani-

fest concurrency bugs, 28 of which even lead to severe real-world

consequences, such as overcharging customers. While this large

percentage might seem unsurprising considering the variety of ad

hoc transaction implementations, our study is the first to provide

a detailed analysis of this phenomenon. For example, we find that

11 cases have more than one issue, requiring independent fixes.

Among all issues, incorrect primitive implementations, such as

locks, are the most common cause (47 cases). We have submitted

20 issue reports (covering 46 cases) to developer communities; 7 of

them (covering 33 cases) have been acknowledged.

(iv) Ad hoc transactions can have performance benefits under high-
contention workloads. Using application semantics such as access

patterns, ad hoc transactions’ CC could be implemented in a simple

yet precise way. Thus, they can avoid false conflicts under high

contention workloads. For example, an ad hoc transaction may

leverage the knowledge of accessed columns to use column-level

locks for coordination, which can achieve up to 1.3× API perfor-

mance improvement compared to row-level locking by avoiding

false conflicts on the contented rows.

The prevalence of ad hoc transactions and their unique character-

istics suggest the potential of improving existing database systems

that support these applications. Finally, we discuss the implications

of our findings on future database and storage systems research.

2 BACKGROUND AND MOTIVATION
2.1 Concurrency Control in Web Applications
Today, web applications often use standalone relational database

management system (RDBMS) to manage and persist data so that

developers can focus on writing business logic. As web applications

are prominently written in object-oriented languages, most applica-

tions manipulate relational data with the help of ORM frameworks

such as Hibernate [71] and Active Record [69]. These frameworks

can transparently generate SQL statements that fetch and persist

data according to the application code. Fetched relational data is

Feral CC
Bailis et al. [5]

ACIDRain
Warszawski and Bailis [83]

This work

Target

ORMs’ invariant

validation APIs
Database transactions Ad hoc transactions

Aspects

1. Characteristics

2. Correctness

Correctness

1. Characteristics

2. Correctness

3. Performance

Issue

types

Insufficient isola-

tion

1. Insufficient isolation

2. Incorrect trans.

scope

1. Incorrect sync. primitives

2. Incorrect ad hoc trans. scope

3. Incorrect failure handling

Table 1: Comparison with Feral CC and ACIDRain.

presented as in-memory, application runtime objects, which we

refer to as ORM-mapped objects. Furthermore, ORMs also provide

interfaces to assist developers in coordinating concurrent database

accesses: database transaction APIs and invariant validation APIs.
ORM frameworks usually allow developers to use database trans-

actions explicitly, with interfaces that directly translate to Transac-

tion Start, Commit, and Abort statements. Developers use them to

encapsulate multiple database operations into units of work, and

the database system takes the responsibility of coordination. Fur-

thermore, ORM frameworks also allow developers to configure the

isolation level for specific transactions. However, most web appli-

cations use the default isolation level of the database system [83].

Besides database transactions, ORMs also provide built-in invari-

ant validation APIs. For example, Active Record [69] provides vali-

dation and association keywords, such as validates and belongs_to.

Developers use them to explicitly specify invariants, such as the

uniqueness of column values and the presence of associated rows,

in the application code. Active Record checks invariants upon data-

base writes and report errors on violations. Checks are typically

done by examining the to-be-persisted ORM-mapped objects and

related rows fetched from the database systems.

Invariant validation differs from database transactions. The latter

coordinates every database operation according to given isolation re-
quirements; the former handles concurrency by directly examining

database states to prevent the specified invalid outcomes only.

2.2 Existing Studies on CC in Web Applications
Researchers have studied how database-backed web applications

handle concurrency (Table 1). The major difference between these

works and ours lies in the coordination approach being studied.

Bailis et al. [5] studied “feral” CC—ORM’s invariant validation APIs,

andWarszawski and Bailis [83] studied database transactions, while

this work targets a third, much less modular approach, ad hoc

transactions. Consequently, we examine different aspects and have

arrived at new and interesting findings.
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Application Category Language/ORM RDBMS Stars Contri-
butors

Discourse [12] Forum Ruby/Active Record PG 33.8k 776

Mastodon [75] Social network Ruby/Active Record PG 24.6k 644

Spree [81] E-commerce Ruby/Active Record PG, MY 11.4k 855

Redmine [39] Project mgmt. Ruby/Active Record PG, MY, + 4.2k 8

Broadleaf [10] E-commerce Java/Hibernate PG, MY, + 1.5k 73

SCM Suite [22] Supply chain Java/Hibernate PG, MY 1.5k 2

JumpServer [24] Access control Python/Django PG, MY, + 16.8k 88

Saleor [77] E-commerce Python/Django PG, MY, + 13.9k 181

Table 2: The applications corpus. The “RDBMS” column lists sup-

ported RDBMSs. “PG/MY/+” refers to PostgreSQL/MySQL/others.

Specifically, Bailis et al. studied how Rails [70] applications adopt

invariant validation APIs to handle concurrency, and they analyzed

the soundness of this approach. They have found that application-

level invariant validations are used much more often than database

transactions. Furthermore, with the theory of invariant conflu-

ence [4], they have found that the majority of the validations are

sound, i.e., they preserve invariants even under concurrent execu-

tion using weak isolation levels such as Read Committed, while the

remainders do not. Meanwhile, Warszawski and Bailis focused on

the correctness of database transaction usages in web e-commerce

applications. They analyzed SQL logs to identify non-serial API exe-

cutions that potentially violate application invariants. By manually

checking potential violations, they have identified 22 bugs caused

by insufficient isolation levels and incorrect transaction scopes.
In contrast, we examine the characteristics (§3), correctness (§4),

and performance (§5) of ad hoc transactions. We believe our results

complement those of Bailis et al. in understanding application-level

CC and may benefit Warszawski and Bailis’s method as ad hoc

transactions are composed of application-level constructs, which

cannot be captured by SQL logs and thus cause false conflicts for

their method [83, §3.2].

2.3 Ad Hoc Transactions in the Wild
Besides database transactions and ORM-provided invariant valida-

tion, we have observed a third CC approach in web applications—ad

hoc transactions. Like database transactions, ad hoc transactions

provide isolation semantics such as serializability to database op-

erations. The difference is that ad hoc transactions coordinate op-

erations with application code—it is the application developers,

instead of database developers, who design and implement the CC.

Both ORM’s invariant validation APIs and ad hoc transactions op-

erate at the application level. However, the difference lies in how

they ensure correctness. The former looks at database states for

invariant violation; the latter directly isolates concurrent database

operations. For example, Figures 1a and 1b use locks to isolate

conflicting operations, e.g., the concurrent reading and writing of

the same cart. Similarly, Figure 1c uses version checks to detect

conflicting changes and ensure read–modify–writes (RMWs) are

atomic. In contrast, with ORM’s invariant validation, these conflict-

ing accesses can freely interleave; application invariants, such as

the non-negativity of total fields, are checked only when data is

written back to the RDBMS.

To understand ad hoc transactions’ roles and criticality in web

applications, we investigated 8 representative applications of 6 cat-

egories (Table 2). They are the most popular web applications in

App. Core APIs using ad hoc transactions Cases
Discourse Posting, image upload, notification. 8/13

Mastodon Posting, polls, messaging, viewing. 10/16

Spree Check-out, cart modification. 10/10

Redmine Issue tracking, metadata mgmt., attachments. 6/9

Broadleaf Check-out, cart modification. 6/11

SCM Suite Account mgmt., merchandise info. tracking. 11/11

JumpServer Granting privileges, asset updates. 5/5

Saleor Check-out, payment, refund, stock mgmt. 15/16

Table 3: Ad hoc transactions are mainly used in core APIs.

App. Cases CC alg.
Total Buggy Lock Valid.

Discourse 13 13 10 3

Mastodon 16 11 11 5

Spree 10 10 4 6

Redmine 9 1 6 3

Broadleaf 11 7 5 6

SCM Suite 11
†

8 8 3

JumpServer 5 0 5 0

Saleor 16 3 16 0

Total 91 53 65 26

†
SCM Suite generates source code for different suppliers from templates; only cases

in templates are counted. In its (generated) demo, there are 167 cases.

Table 4: Statistics of identified ad hoc transactions. Buggy
cases refer to those with correctness issues. All cases coordinate

concurrency either with Locks or OCC-style Validations.

each category
1
and developed in different languages with different

ORM frameworks. For example, Broadleaf [10] is the highest star-ed

Java e-commerce application on GitHub and Spree [81] is the most

popular e-commerce application in Ruby. To locate ad hoc transac-

tions, we first search the keywords such as “lock,” “concurrency,”

and “consistency” in the codebase, the commit histories, and the

issue trackers. Then, we manually identify coordination code that

isolates database operations and the purpose of those operations.

Finding 1. Every studied application uses ad hoc transactions.
Among the 91 ad hoc transactions in total, 71 cases are considered
critical to the web applications.

Table 3 shows the study result on ad hoc transactions’ criticality.

For the e-commerce applications, we consider an ad hoc transac-

tion critical if it resides in their core APIs such as check-out and

add-cart to ensure safe shopping. For example, an ad hoc transac-

tion may coordinate the reading and writing coupon data to avoid

coupon overuse. Among the three popular e-commerce applica-

tions, Broadleaf [10], Spree [81], and Saleor [77], there are 37 ad

hoc transactions in total, and 31 of them are critical. Specifically, 13

cases ensure that orders are accepted only when the stock quantity

is sufficient, and 5 avoid inconsistent capture of payment. Inter-

estingly, all these applications have ad hoc transactions to ensure

sufficient stock quantity and coupon validity. Core APIs of other

applications are listed in Table 3.

Considering their importance in web applications, we further

investigate ad hoc transactions to answer the following questions.

• How are ad hoc transactions constructed among applications?

• Can ad hoc transactions always ensure the correct semantics?

• How is ad hoc transactions’ performance, especially in compari-

son with database transactions?

1
Redmine [39] is the second popular project management application now. Its popu-

larity has waned since we picked it as the investigation target.
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3 CHARACTERISTICS OF AD HOC
TRANSACTIONS

We have carefully studied the 91 identified ad hoc transaction cases.

An interesting but not surprising finding is that, even though devel-

opers implement ad hoc transactions in various ways, these cases

can still be classified into pessimistic ad hoc transactions (65/91) and
optimistic ad hoc transactions (26/91). In pessimistic cases, develop-

ers explicitly use locks to block conflicting database operations in

ad hoc transactions. This method is similar to two-phase locking

(2PL) and its variants commonly used by existing database sys-

tems [23, 26, 28, 37, 41, 50, 52, 73]. Unlike database transactions,

pessimistic ad hoc transactions’ locking primitives are usually im-

plemented from scratch by application developers (e.g., Figures 1a

and 1b) or provided by other systems (see §3.2). Meanwhile, op-

timistic ad hoc transactions execute operations aggressively and

validate the execution result before writing updates back to the

database system (Figure 1c). This approach is similar to OCC and

its variants used in existing database systems [35, 36, 38, 53, 72, 82].

Though ad hoc transactions can be straightforwardly categorized

as either pessimistic or optimistic, they are nonetheless notably

different in terms of usages and implementations. Specifically, (i)

how do ad hoc transactions blend in with and coordinate business

logic? (ii) how is their CC designed and implemented? (iii) what are

their coordination granularities? (iv) how do they handle failures?

With these questions in mind, we examine ad hoc transactions and

compare them with database transactions to gain further insights.

For the comparison, we considered database transactions from

MySQL 8.0.25 and PostgreSQL 13.5, the two most popular open-

source RDBMSs [17] compatible with the applications (Table 2).

3.1 What Do Ad Hoc Transactions Coordinate?
In writing ad hoc transactions, developers explicitly place ad hoc

coordination constructs among the business logic. This approach

gives them the flexibility of choosing which and how operations are

coordinated, enabling partial coordination, cross–HTTP request

coordination, and coordination with non-database operations.

Finding 2. Among the 91 ad hoc transactions studied, 22 only
coordinate a portion of database operations in their scopes, and
10 coordinate operations across multiple requests. Besides, 8 cases
coordinate database operations along with non-database operations.

3.1.1 All Database Operations vs. Specific Database Operations. As
ad hoc transactions’ coordination is explicitly written by application

developers, developers can coordinate only specific database opera-

tions instead of all operations in the transaction scope. Consider

the following example from the Spree e-commerce application [81].

1 in: sku_id, requested
2 lock(sku_id)
3 sku := Select * From SKUs Where id=sku_id
4 if sku.quantity >= requested:
5 sku.quantity -= requested
6 // the followig statements are auto-generated by ORM.save(sku)
7 Transaction Start

8 Update SKUs Set quantity=sku.quantity Where id=sku.id

9 Update Products Set updated_at=now() Where id=sku.product_id
10 category_ids := Select category_id

11 From Categories Join ProductCategories Using category_id

12 Where product_id=sku.product_id
13 Update Categories Set updated_at=now() Where id In category_ids
14 Transaction Commit

15 unlock(sku_id)

This transaction processes customer orders. It first fetches the stock-

keeping unit (SKU) data from the SKUs table, checks and updates

the SKU’s stock quantity, then persists changes to the database

system by invoking the ORM.save() method. ORM.save() automat-

ically starts a database transaction, within which it issues three

updates and one query (line 8–13). This transaction is running in

the RDBMS’ default isolation level
2
. The first update changes the

quantity in the SKUs table, and other updates refresh the update_at

timestamps of corresponding Products and Categories rows. Cate-

gories rows are identified by querying the ProductCategories table,

which encodes the many-to-many relationship between products

and categories. In this example, the only critical operations are those

over SKUs (lines 3 and 8). Therefore, developers explicitly lock over

sku_id in their ad hoc transaction implementation. Other operations

such as product and category updates (lines 9 and 13) require no

coordination but are still in the lock scope, as the application-level

ORM.save() call automatically generates them.

In this example, replacing the lock()/unlock() primitives with

Transaction Start/Commit may worsen performance, as all the

updates will be performed under the same isolation level. Consider

MySQL, one of Spree’s supported RDBMSs (Table 2). Serializable

isolation must be used since all MySQL’s non-Serializable isolation

levels will introduce lost updates due to the RMW operations over

SKUs [48, §7.3.3.3]. Unfortunately, two Serializable transactions

would deadlock when they attempt upgrading to writer locks at

line 13 after acquiring reader locks on the same Categories row at

line 10. However, with ad hoc transactions, only the critical SKU

operations are serialized, and Categories accesses are executed in

MySQL’s default isolation level, Repeatable Read, which does not

acquire reader locks [57, §15.7.2.3].

Besides MySQL, other database systems might also have similar

issues. Consider using PostgreSQL to back Spree, where Repeatable

Read is the weakest available isolation level that avoids lost updates

on SKUs in this example. PostgreSQL implements Snapshot Isola-

tion for Repeatable Read. When concurrent transactions update

different SKUs but the same Categories row and cause write–write

conflicts, PostgreSQL will abort transactions according to Snap-

shot Isolation’s first-committer-wins property [9]. In contrast, ad

hoc transactions’ ORM-generated Categories accesses are executed

under PostgreSQL’s default isolation level, Repeatable Read, where

conflict writes will not cause aborts [33, §13.2.2].

Ideally, developers should exclude these timestamp updates from

the scope of database transactions or switch the isolation level with

database interfaces [47]. However, neither could be applied to the

above example, as the ORM hides the generation of such database

operations. 22 ad hoc transactions coordinate only a portion of the

database operations in the transaction scope. The other operations

require no coordination but are located in the transaction scope as

2
MySQL defaults to Repeatable Read; PostgreSQL defaults to Read Committed.
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they are either automatically generated by the ORM or needed by

critical operations. However, it is difficult for the database transac-

tion to provide such flexibility.

3.1.2 Individual Requests vs. Multiple Requests. It is a performance

anti-pattern for database transactions to span multiple HTTP re-

quests, introducing long-lived transactions (LLTs). However, 10 ad

hoc transactions coordinate database operations across multiple

requests. Below is an example derived from the Discourse forum

application [12] of editing a post that spans two user requests. The

user fetches the post content for local editing in the first request.

Then, the user’s edits are applied in the second request. This ad hoc

transaction ensures that other concurrent edits do not overwrite

the content read by the first request when editing the post.

1 Request 1 // fetch a post & increment view count
2 in: post_id
3 Update Post Set view_cnt=view_cnt+1 , ver=ver+1 Where id=post.id
4 post := Select * From Posts Where id=post_id
5 response render(post) // this response includes the version
6 Request 2: // detect interruptions & apply user updates
7 in: post_id, new_content , prev_ver
8 lock(post_id)
9 current := Select * From Posts Where id=post_id
10 if current.ver!=prev_ver: unlock(post_id); response FAILURE
11 Update Posts Set content=new_content , ver=ver+1 Where id=post_id
12 unlock(post_id); response SUCCESS

Specifically, developers use an optimistic ad hoc transaction to en-

sure the consistency of the post content. They associate a version

with each post to track updates. Before updating a post, the ad

hoc transaction checks the consistency (i.e., not overwritten) by

validating the version. Furthermore, it needs to use a lock to en-

sure the validate-and-commit atomicity. If the validation fails, the

current request handler will not update the content, thus avoiding

overwriting others’ changes. However, the view count increment in

the previous request handler cannot be rolled back. Normally, web

applications choose optimistic coordination instead of pessimistic

coordination to coordinate multiple requests to avoid long blocking.

Extensions to database transactions were proposed for LLTs,

such as Sagas [25] and savepoints [29, 51]. They usually provide

(potentially unnecessarily) stronger semantics than what ad hoc

transactions provide here. To use Sagas, developers have to decom-

pose an LLT into subtransactions accompanied with compensation

transactions. When any subtransaction aborts, compensation trans-

actions of prior-committed subtransactions will be invoked, negat-

ing their effects as if the LLT has never been executed. This semantic

is different from the ad hoc transaction across multiple requests.

The above ad hoc transaction only aborts the request handler that

detects conflicts. Alternatively, developers can set savepoints af-

ter handling each request when coordinating multi-request user

interactions with conventional, long-lived database transactions.

When the application detects an error (except for fatal errors such

as deadlocks), it can explicitly roll back the transaction state to pre-

viously set savepoints instead of aborting the entire LLT. However,

in some RDBMSs such as MySQL, LLTs block all other conflicting

transactions until it commits, i.e., finishing the last request. For the

above example, concurrent transactions which update view_cnt in

the Posts table will be unnecessarily blocked. Furthermore, data

written by previous requests in LLT could be lost if the application

server fails midway.

3.1.3 Database Operation vs. Non-Database Operations. The flexi-
bility of ad hoc transactions is also reflected in coordinating non-

database operations. A web application may use several storage

systems to persist its data. Thus, it needs to ensure data consistency

across different systems. There are 8 cases of ad hoc transactions

that coordinate both database operations and non-database opera-

tions, such as operations over in-memory shared variables, local

file systems, and remote object/key–value (KV) stores. Consider

the following example simplified from the timeline feature of the

Mastodon social network application [75].

1 Create Post

2 in: follower_id, post_id, content
3 lock(post_id)
4 Insert Into Posts Value (post_id, content)
5 REDIS.add_to_set("timeline"+follower_id, post_id)
6 unlock(post_id)
7 Delete Post

8 in: follower_id, post_id
9 lock(post_id)
10 REDIS.delete_from_set("timeline"+follower_id, post_id)
11 Delete From Posts Where id=post_id
12 unlock(post_id)

It uses a Redis KV store and an RDBMS as its backend storage.

Redis holds the IDs of posts shown on each user’s timeline, while

the concrete post contents are resident in the RDBMS. To ensure

correctness, Mastodon must guarantee the consistency between

the post contents in the RDBMS and the post IDs in Redis. Specif-

ically, the post IDs in Redis should always refer to post contents

in the RDBMS, which can not be achieved solely with database

transactions. Thus, developers implement ad hoc transactions to

coordinate these operations. Note that only the post is locked in

this example because the operations over Redis timelines commute.

In general, when the business logic requires data from multiple

storage systems (including multiple RDBMSs) to stay consistent,

the alternative option is to use distributed transactions, such as WS-

TX [54, 55] or XA transactions [86]. However, storage systems rarely

support such distributed transaction protocols, which necessitate

ad hoc transactions. Dey et al. [18, 19] designed a protocol, Cherry

Garcia, providing ACID transactions over multiple KV stores at

the application level. In addition to a KV interface, it poses further

requirements on KV stores, such as the ability to set user-defined

metadata. Therefore, Cherry Garcia cannot directly replace ad hoc

transactions since other accessed storage systems do not necessarily

meet these requirements.

3.2 How Is The Coordination Implemented?
Developers need to manually coordinate ad hoc transactions, in-

cluding locking (for pessimistic cases) and validation (for optimistic

cases). However, the locking primitives and validation procedures

usually have different implementations.
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Finding 3. There are 7 different lock implementations and 2 valida-
tion implementations among the 8 applications we studied. Except
for Broadleaf, developers consistently use the same lock/validation
implementation in individual applications.

3.2.1 Existing Systems’ Locks vs. Hand-Crafted Locks. All 8 studied
applications have lock-based pessimistic ad hoc transactions. They

usually use a single locking primitive implementation, provided by

either existing systems or developers themselves.

Four applications directly use the locking primitives provided by

the database systems or languages runtimes. Specifically, Spree [81],

Saleor [77], and Redmine [39] use the database Select For Up-

date statements, while SCM Suite [22] implements ad hoc transac-

tions based on the Java synchronized keyword. Most commercial

databases accept Select For Update statements, which atomically

fetch target rows and acquire corresponding writer locks. The lock

will be released when the currently active transaction ends.

1 in: item_id
2 Transaction Start

3 alloc := Select * From Allocations Where item_id=item_id For Update

4 stock := Select * From Stocks Where id=alloc.stock_id For Update

5 if alloc.qty > stock.qty: Transaction Abort

6 else:

7 Update Allocations Set qty=0 Where id=alloc.id
8 Update Stocks Set qty=qty-alloc.qty Where id=stock.id
9 Transaction Commit

The above example is simplified from the Saleor e-commerce appli-

cation [77], where developers acquire database locks on the stock

and the stock allocation with Select For Update. The lock is re-

leased after the stock’s sufficiency is checked and the allocation is

applied. Thus, ad hoc transactions must enclose the critical section

in a database transaction to use the database locks. However, this

database transaction could be configured with a weak isolation

level such as Read Committed.

Three other applications, Discourse [12], Mastodon [75], and

JumpServer [24], have locks implemented from scratch. Interest-

ingly, they all store lock information, including lock keys and status

(locked/unlocked), in the Redis KV store. However, their implemen-

tation details are different. As shown in Figure 1b, Mastodon devel-

opers use the Redis SETNX (short for SET if Not eXists) command

to insert an entry for the requested lock. Similar to the Compare

and Swap (CAS) instruction, this command succeeds only if no

entry with the same key exists. In contrast, Discourse developers

use a combination of WATCH, GET,MULTI, and SET commands to

optimistically ensure the atomicity of checking existing locks and

setting new locks.
3
As a result, Discourse’s Redis lock requires six

additional round trips compared to Mastodon’s, which only needs

one [63]. Saleor uses SETNX to implement locks as Mastodon; it

also adds a re-entrant feature, allowing locks to be acquired by the

same thread multiple times.

Broadleaf [10] is the only application using both home-grown

lock implementations and existing systems’ primitives—the Java

synchronized keyword.More interestingly, it has three home-grown

3
WATCH adds a key, even if it does not exist in Redis yet, to a watch set, andMULTI

detects if any change has taken place ever since for keys in the watch set.

implementations: one uses a separate database table to store lock

information similar to those Redis-based locks; the other two use in-

memory maps for lock information. The latter two implementations

differ in the specific maps used: one directly uses a concurrent map

from the standard library, ConcurrentHashMap; the other uses a

customized ConcurrentHashMap where developers added a least

recently used (LRU) eviction policy to remove excessive lock entries.

We find no clear evidence that these different implementations serve

different purposes. However, we do find that different developers

have introduced these implementations.

3.2.2 ORM-Assisted Validation vs. Hand-Crafted Validation. 6 out
of 8 studied applications have validation-based optimistic ad hoc

transactions. Their validation procedures are either provided by

the ORM framework or developers themselves.

There are 4 applications that use ORM-provided validation proce-

dures via framework-specific interfaces. For example, Active Record

recognizes columns named lock_version and uses them to store ver-

sions for individual rows. Upon each update, as shown in Figure 1c,

Active Record automatically adds version checking to theWhere

clause and increment version along with user-initiated updates,

ensuring the atomicity between validation and commit.

When using hand-crafted validation procedures, developersmust

ensure the atomicity between validation and commit. As shown

in the listing from §3.1.2, additional locks are employed for this

purpose. All validation procedures in Discourse’s and SCM Suite’s

optimistic ad hoc transactions are manually implemented. Broadleaf

uses both implementations, introduced by different developers.

Primitive implementations vary across different applications and

even in the same application. However, we did not find any obvious

reason for developers preferring one particular implementation

over others. We relate different implementations with different

correctness issues in §4 and also compare their performance in §5.

3.3 What Are The Coordination Granularities?
Developers often have a deep understanding of applications that

enables them to customize the coordination granularity. Intuitively,

one might think of finer-grained coordination than database trans-

actions. For example, an ad hoc transaction can coordinate at the

column level and only focus on the accesses to specific columns

since developers have the precise knowledge of which columns are

needed by the business logic. This can reduce false conflicts caused

by row-based coordination [30]. However, ad hoc transactions also

employ coarser-grained coordination than database transactions.

Specifically, ad hoc transactions often group multiple accesses to-

gether and coordinate them with a single lock. This can largely

reduce ad hoc transactions’ CC complexity and avoid deadlocks.

Finding 4. Among the 91 studied ad hoc transactions, 14 cases
perform fine-grained coordination such as column-based coordina-
tion, while 58 cases perform coarse-grained operations, i.e., using
a single lock to coordinate multiple operations. 9 cases implement
both types of coordination for different accesses.

3.3.1 Single Access vs. Multiple Accesses. Lock in ad hoc transac-

tions could coordinate arbitrary database accesses. According to

our study, 58 ad hoc transactions that use one lock to coordinate
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multiple database accesses. This is because the developers usually

could identify the following two access patterns.

Associated Accesses. Given two database rows, r1 and r2, if ac-

cesses to r2 always happen in a transaction that also accesses r1,

we say r2 is associatively accessed with r1 and refer to this access

pattern as the associated access pattern. Access to rows associated

with a one-to-many relationship, such as an is-part-of relationship,

often follows this pattern. Consider the example in Broadleaf [10],

shown in Figure 1a. A cart is represented as one Carts row and

several Items rows. When a user modifies the cart, the transaction

will associatively access these rows. The associated access pattern

provides an opportunity of replacing multiple locks (e.g., row locks)

with one lock that coordinates these accesses. In the above example,

developers use a single cart lock to coordinate accesses to both

tables, Carts and Items. This lock explicitly serializes conflicting

transactions up front, thus avoiding potential aborts when using

database transactions. In PostgreSQL, the Carts update in one trans-

action aborts all conflicting transactions that happen before the

update due to write–write conflicts. In MySQL, both the Carts up-

date and the Items insert can form deadlocks, as both tables might

be locked in shared mode by other transactions.

There are about 37 ad hoc transactions that leverage the asso-

ciated access pattern. For all the cases we studied, the associated

rows are connected by either one-to-many or one-to-one relation-

ships. We find that these one-to-many relationships stem from the

application-specific data modeling that reflects the business seman-

tics, such as the relationship between carts and items in the above

example. Meanwhile, these one-to-one relationships come from

inheritance. For example, Broadleaf uses a Bundled_Items table to

store data for items that represent sale bundles. When querying

one bundle item, two database operations are issued to the Items

and Bundled_Items tables. It should be noted that inheritance can

be implemented differently and does not necessarily introduce as-

sociated accesses, e.g., by merging both Items and Bundled_Items

tables into one monolithic table [49, §2.11].

Read–Modify–Writes (RMWs). RMW means that a transaction

first queries the data from the database system, then makes mod-

ification accordingly, and finally persist the modification back to

the database system. In a 2PL system without sufficient deadlock

prevention mechanisms, such as MySQL, there can be a deadlock if

two concurrent transactions perform the RMW on the same row.

Assuming both transactions use Serializable isolation, if they both

have successfully acquired reader locks, then their updates block

each other, causing deadlocks. Note that MySQL’s non-Serializable

isolation levels does not prevent lost updates [48, §7.3.3.3], which

necessitate the use of Serializable. Consider the example shown in

Figure 1b, in the forum application Discourse [12], RMW operations

are issued when creating a new account via invitations. The invita-

tion is first read from the RDBMS. After checking its validity, it gets

updated and written back to the RDBMS. If two users concurrently

use one invitation to join the forum, a deadlock can easily appear,

making both users unable to succeed.

To mitigate this, developers craft ad hoc transactions to acquire

exclusive locks before the first reads, avoiding possible deadlocks.

56 out of 91 cases leverage the RMW access pattern. Among them,

35 cases also utilize the associated access pattern.

Discussion. Reducing the number of locks simplifies the imple-

mentation and avoids potential deadlocks. However, such optimiza-

tions can rarely be used in database systems because they highly

rely on application semantics. One might think of using static anal-

ysis to identify those special patterns. But this is not trivial, espe-

cially for detecting the associated access pattern. This is because

one needs to analyze every line of code to ensure those accesses

are always together, and web applications usually have a large

codebase. For instance, our studied application has 160.4k lines of

code on average. Besides, most applications use ORMs to hide the

database access details, making the analysis more challenging.

3.3.2 Fine-Grained vs. Coarse-Grained. Coordinating at a finer

granularity than existing database systems has an obvious advan-

tage is avoiding false conflicts. We find ad hoc transactions’ fine-

grained coordination are either based on columns or predicates.

Columns-Based vs. Row-Based. Fields of ORM-mapped objects

correspond to database columns. Developers could coordinate data-

base accesses at the column granularity if they know which fields

are used. For example, in the forum application Discourse [12], two

transactions, create-post and toggle-answer, will issue the follow-

ing database operations accessing the Topics table.

1 Create Post

2 in: topic_id, content
3 lock("create_post"+topic_id)
4 next_post_id := Select max_post From Topics Where id=topic_id
5 Insert Into Posts Value (next_post_id, content, topic_id)
6 Update Topics Set max_post=max_post+1 Where id=topic_id
7 unlock("create_post"+topic_id)
8 Toggle Answer

9 in: topic_id, post_id
10 lock("toggle_answer"+topic_id)
11 Update Posts Set is_answer=true Where id=post_id
12 Update Topics Set answer=post_id Where id=topic_id
13 unlock("toggle_answer"+topic_id)

line 6 increments the max_post field; line 12 sets the answer field.

Though these operations have no column-level conflicts, if they

access the same row, an RDBMS using row locks cannot execute

them in parallel. Therefore, instead of using database transactions,

Discourse developers implement two lock namespaces for these

two transactions so that locks coordinating line 6 will not interfere

with locks for line 12.
4

Optimistic ad hoc transactions can also benefit from column-

based coordination—they only need to validate whether specific

column values have been updated. The following shows a more ac-

curate representation of the edit-post transaction in Discourse [12],

which we previously discussed in §3.1.2.
5

1 in: post_id, new_content , old_content
2 lock(post_id)
3 current := Select * From Posts Where id=post_id
4 if current.content!=old_content: unlock(post_id); response FAILURE
5 Update Posts Set content=new_content Where id=post_id
6 unlock(post_id); response SUCCESS

4
Nevertheless, RDBMS still executes line 6 and line 12 serially to avoid data corruption.

5
However, the version column still exists for use in other APIs.
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It performs value-based validation on the updated content col-

umn to detect concurrent changes. Any concurrent update to other

columns, including view_cnt increments, will not interfere with

content updates. Overall, 5 ad hoc transactions where developers

use column-level coordination to unleash potential parallelism.

Gap vs. Predicate. Knowing the search conditions, developers

can use the precise predicate for coordination. This can avoid false

conflicts caused by the gap lock used in the major RDBMSs [44,

50, 52], including MySQL and PostgreSQL. For example, in the

Spree [81] e-commerce application, RDBMSs might concurrently

execute the following codewith order_id of 10 and 11 corresponding

to two orders created by transaction Txn 1 and Txn 2, respectively.

1 in: o_id, ..
2 lock(order_id=o_id)
3 pays := Select * From Payments Where order_id=o_id
4 if pays is empty:

5 Insert Into Payments Value (o_id, ..)
6 unlock(order_id=o_id)

In Txn 1, line 3 checks if any payment row exists for the order iden-

tified by order_id=10. Since an order can have many payments (to

allowmixed payment methods), the order_id index of the Payments

table is non-unique. Suppose that it currently indexes values 9 and

12. Executing line 3 of Txn 1 causes the RDBMS to acquire a gap

lock on the index interval (9, 12), blocking concurrent inserts to

this range so that re-executing line 3 can obtain repeatable results.

Meanwhile, line 5 in Txn 2 inserts a new payment row for another

order whose order_id equals 11. Though this insert does not inter-

fere with Txn 1’s line 3, it would nevertheless be blocked by the gap

lock. To make matters worse, this situation can be commonplace

in e-commerce applications. Check-out operations are usually per-

formed on newly created orders, which have the largest order_ids.

Such operations would content on one common interval—the one

starting from the latest paid order’s order_id to infinity—and there-

fore block each other. We consider these locks a variant of predicate
locks [23, 37], as they use predicate information of accesses (i.e.,

the order_id values) to achieve precise mutual exclusion without

false conflicts. Among the 91 cases we studied, 10 cases implement

predicate locking for accurate coordination, all based on equality

predicates; 1 case implements both column-based coordination and

predicate-based coordination. Predicate locking can be achieved

with a concurrent hash table tracking locked values for simple

equality predicates. Since developers understand web applications’

accesses better than RDBMSs, it is more practical for them to derive

a customized predicate locking scheme than for RDBMSs to provide

general predicate locking.

Discussion. Both predicate locking and column-level locking in-

troduce performance costs to database systems. For complex predi-

cates, the performance advantage of ad hoc transactions might di-

minish due to the cost of deciding predicate compatibility. The cost

grows with the generality of supported predicates, and expensive

satisfiability modulo theories (SMT) solvers would be ultimately

required. For example, to support range predicates, an intuitive

method is to store all active ranges in an interval tree. In this case,

ad hoc transaction performance would depend on the performance

and scalability of the underlying tree structures, to obtain which

require significant effort [45]. For column-level locks, the main cost

is space usage, as each column requires a lock.

3.4 How Are Failures Handled?
Similar to database transactions, ad hoc transactions also need to

handle failures caused by deadlocks, failed validation, database

failure, and web server crashes.

Finding 5. All pessimistic ad hoc transactions do not encounter
deadlocks as they all acquire locks in the same order. Most optimistic
ad hoc transactions (19 out of 26 cases) directly return an error to
the user on failed validation.

3.4.1 Automated Rollback vs. Manual Rollback. We first consider

failures without any crashes. These failures are usually caused by

deadlocks or validation failures. Each pessimistic ad hoc transaction

either uses a single lock (52/65) or acquires locks in a consistent

order (13/65). Thus, none of them needs to handle deadlock at

runtime. As for optimistic ad hoc transactions, 19 cases directly

return an error to end users on validation failures without persisting

any update. In other cases, non-critical updates are issued before

the validation phases, which requires rollbacks upon validation

failures. Optimistic ad hoc transactions either use certain rollback
methods to negate the effect of updates or use repair techniques to
“roll forward” and commit changes, as discussed below.

Rollback methods in ad hoc transactions are either based on

(i) database transactions’ atomicity property or (2) hand-crafted

rollback procedures. There is 1 case using the former method. It uses

a database transaction with Read Committed isolation to enclose

update and validation statements. A user-initiated abort is issued

to terminate the database transaction and roll back updates if the

validation fails. Meanwhile, 2 cases are equipped with manually

written rollback procedures. These procedures are triggered by

validation failures and will undo persisted updates.

Meanwhile, 4 cases choose to repair the inconsistent values

instead of rolling back on conflicts. This idea relies on developers’

knowledge of program dependency and is similar to the transaction

repair optimizations [16, 84]. Consider the following example taken

from the Discourse [12] forum application, a periodic background

task that shrinks large images in posts.

1 in: original, shrunken
2 posts := Select * From Posts Where img_id=original.id
3 for post in posts:
4 while true:

5 new := replace(original, shrunken, post.content)
6 success := Update Posts

7 success := Set content=new, img_id=shrunken.id , ver=ver+1
8 success := Where id=post.id , ver=post.ver
9 if success: break
10 post := Select * From Posts Where id=post.id

Since multiple posts can use the same image, this transaction may

conflict with a user-initiated post edit, which only modifies a sin-

gle post. In such cases, an RDBMS may abort the transaction and

rollback work done for other unaffected posts, and the application
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has to perform shrinking and content replacement again. A bet-

ter solution is to identify the changed post, only redo the content

replacement for it, and commit the image shrinking transaction.

3.4.2 Crash Handling. Failures caused by crashes can be further

divided into two categories: (i) database system crashes and (ii)

application server crashes. When the former occurs, application

server-side database drivers will detect connection loss and throw

runtime exceptions to notify the application to perform failure han-

dling after database system recovery, as we previously discussed.

However, rollback statements for ongoing ad hoc transactions

cannot be issued when the latter occurs. To correctly resume ser-

vice after application reboot, applications need to ensure that locks

acquired before crashes will not cause deadlocks, and application

logic can tolerate potential intermediate database states. It is easy

to avoid deadlocks: among all cases except one from Broadleaf [10],

lock information does not persist—they either vanish along with

crashes (in-memory locks) or expire after a given period (Redis

locks). The exceptional Broadleaf case uses locks persisted in a data-

base table. To avoid deadlock, developers associate each lock with

a boot-time generated universally unique identifier (UUID) that dis-

tinguishes each boot. Thus, Broadleaf can ignore prior unreleased

locks after reboot by examining the saved UUIDs.

Meanwhile, the fact that many cases skip rollback (§3.4.1) indi-

cates that some applications are designed to tolerate intermediate

states to a certain extent. We found that developers also write

database consistency checkers, similar to fsck for file systems, peri-

odically invoked when the application is online. For example, every

twelve hours, Discourse [12] checks and fixes inconsistent refer-

ences, such as missing avatars, thumbnails, and topics. However,

whether these checks are sufficient to ensure (eventual) recoveries

to a consistent state is in question. We discuss issues caused by

intermediate states in §4.

4 CORRECTNESS ISSUES
The variety of implementation possibilities as we discuss in §3

indicates that building correct ad hoc transactions is nontrivial.

This section examines the correctness issues of ad hoc transactions

and relates them to the design characteristics. The issues discussed

below are surely incomplete, and we have manually verified that

all issues are reproducible and cause user-noticeable consequences.

Result Summary. 69 correctness issues are found in 53 cases

(Table 5a); some cases have multiple issues. Furthermore, 28 cases

have severe consequences (Table 5b), such as charging customers

incorrect amounts. Most issues relate to the primitives’ usage and

implementations (49/69), while others occur in the choosing of what

to coordinate (16/69) and handling abort (4/69). We have submitted

20 issue reports (covering 46 cases
6
) to developer communities; 7

of them (covering 33 cases) have been acknowledged.

4.1 Incorrect Locks and Validation Procedures
Finding 6. 36 out of 65 pessimistic ad hoc transactions incorrectly
implement or use locking primitives; 11 out of 26 optimistic ad hoc
transactions do not ensure the atomicity between validation and
commit, causing correctness issues.

6
Some affected cases can be resolved in one code patch.

Category Description Apps Cases
Incorrect sync. Locking primitive impl./usage issues. 6 36

primitives Non-atomic validate-and-commit. 3 11

Incorrect ad hoc Omitting critical operations. 4 11

trans. scope Forgetting ad hoc transactions. 3 5

Incorrect failure Incomplete transaction repair. 1 1

handling Not rolling back after crashes. 1 3

(a) Categorization of incorrect ad hoc transactions. Note that one ad
hoc transaction can have multiple issues.

App. Known severe consequences Cases
Discourse Overwritten post contents, page rendering failure, exces-

sive notifications.

6

Mastodon Showing deleted posts, corrupted account info., incorrect

polls.

4

Spree Overcharging, inconsistent stock level, inconsistent order

status, selling discontinued products.

9

Broadleaf Promotion overuse, inconsistent stock level, inconsistent

order status, overselling.

6

Saleor Overcharging. 3

(b) Incorrect ad hoc transactions can have severe consequences.

Table 5: Correctness issues of ad hoc transactions.

4.1.1 Locking Primitive Issues. There are 7 different lock imple-

mentations (§3.2.1) and 5 of them can be incorrect.

Incorrect Lock Usage. When developers reuse existing systems’

locking primitives, misuses arise. There are two existing locking

primitives reused, database systems’ Select For Update statements

and Java’s synchronized keyword (§3.2.1), and both have corre-

sponding cases of incorrect usage. Spree [81] serves as an example

of incorrectly using the Select For Update statement. Since the

lock acquired by Select For Update statements is released when

the current transaction commits, developers need to ensure that

critical operations are executed within the current transaction. Un-

fortunately, Spree does not explicitly enclose the Select For Update

inside a database transaction, which causes the database lock to

release as soon as the statement returns [61]. Meanwhile, SCM

Suite [22] shows an interesting issue related to the synchronized

keyword. After loading data from the database system, SCM Suite

uses this keyword to synchronize over thread-local ORM-mapped

objects. As a result, conflicting threads acquire different locks and

can never block each other [91].

Another type of misuse happens when developers intend to

use a single lock to coordinate RMW operations: they omit the

coordination on the first query statement. Specifically, though ad

hoc transactions intend to acquire locks to coordinate all RMW data

accesses, sometimes the lock key, e.g., an ID, is known after the data

is fetched. In these situations, developers need to re-read the data

after acquiring the lock to coordinate the entire RMW. There are 2

cases where the developers forget the re-read, leaving the initial

read in RMW uncoordinated. For example, in Discourse [12], an

ad hoc transaction uses locks to coordinate posts from concurrent

edits. However, the post is locked after being read from the RDBMS

when processing edit requests. Although the lock serializes the

subsequent write-backs, the complete RMW process is not atomic,

allowing one’s edit to overwrite others’ [76].

Incorrect Lock Implementation. The locking primitives imple-

mented by developers can also have correctness issues. Specifi-

cally, developers incorrectly build the locking primitives with Redis
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store and in-memory lock tables (§3.2.1). For lock based on Redis,

Mastodon [75] gives an example where the developers implement

the lease semantics. Specifically, they enable the auto-expire fea-

ture of Redis [65] for lock entries. As a result, the lock might be

released early when the entry times out before the coordinated

critical section finishes. Unfortunately, Mastodon does not check

whether the lock has expired early and experiences inconsistency,

such as deleted posts appearing in followers’ timelines [14]. Fur-

thermore, all ad hoc transactions in Mastodon are based on this

incorrect lock implementation. For lock based on in-memory lock

table, Broadleaf [10]’s eviction-enabled lock table also provides

lease semantics—when table size reaches a given limit, an LRU

policy is invoked to evict locks from the table [66]. As a result, if a

lock held by the transaction is evicted, two conflicting transactions

(e.g., check-out and add-cart) may concurrently access the same

data (e.g., the order total), which causes inconsistency such as users

not paying for concurrently added items.

4.1.2 Non-Atomic Validate-and-Commit. Validation-based optimistic

ad hoc transactions need to avoid conflicting updates between val-

idation and commit. Thus, they need to guarantee validate-and-

commit atomicity. However, atomicity violation happens when

developers manually implement validation procedures (16 cases),

while ad hoc transactions using ORM-generated validation proce-

dures ensure atomicity (10 cases). Discourse [12] gives an example.

1 in: id, version
2 ActiveRecord.transaction do

3 result := MiniSql.query("Update Reviewables Set version=version+1
4 Where id=id And version=version Returning version")

5 if result is null: raise UpdateConflict exception
6 /* perform actual operation on reviewables */ end

Versions are used to track changes to reviewable items (e.g., a con-

troversial topic) and prevent conflicting administrator operations.

Developers explicitly enclose the validation (line 3–5) and subse-

quent updates (line 6) in an Active Record transaction block, within

which queries should be issued in a database transaction. However,

the validation queries are expressed using interfaces provided by

MiniSql [13], a module independent of Active Record. As a result,

Active Record cannot intercept and issue validation queries as part

of the database transaction, thus failing to provide validate-and-

commit atomicity [62].

4.2 Incorrect Coordination Scope
Incorrect coordination scopes refer to errors developers make when

choosing what to coordinate in ad hoc transactions.

Finding 7. 16 issues arise from incorrect coordination scope. Specif-
ically, developers either omit some critical operations in existing ad
hoc transactions (11/16) or forget to employ ad hoc transactions for
certain business procedures altogether (5/16).

Omitting Critical Operations. Though the flexibility of choosing

what to coordinate is an advantage of ad hoc transactions (§3.1.1),

it comes with an increased chance of leaving critical operations

uncoordinated. For example, in Broadleaf [10], the ad hoc transac-

tion that coordinates the check-out process omits coordination for

all SKU-related operations. As a result, concurrent check-outs for

the same SKU can lead to inconsistency between the SKU quan-

tity decrement and the number of sold items [67]. Optimistic ad

hoc transactions are subject to such errors as well. For example, in

Spree [81], the transaction that decrements SKU quantity (shown

in §3.1.1) also involves setting the order status column. However,

modification to order status is not coordinated, allowing duplicate

decrements and resulting in inconsistent stock levels [61].

Forgetting Ad Hoc Transactions. Forgetting to coordinate certain

business logic with transactions is a general problem with both

ad hoc and database transactions. However, it is more disastrous

with ad hoc transactions. A conflicting business procedure without

proper ad hoc transactions installed (e.g., another request handler)

can freely interleave with other procedures coordinated by ad hoc

transactions, reading and writing “coordinated” data. For example,

in Spree [81], all ad hoc transactions are deployed in the request han-

dlers that return responses in the HTML format. However, another

uncoordinated set of handlers with the same functionality exists

and produces JSON format responses. As a result, JSON handlers’

interleaving with HTML handlers leaves RDBMS states inconsis-

tent [59]. To detect such issues, developers have to understand how

concurrent threads of handler execution conflict with each other

and know all conflicting operations of a specific handler.

4.3 Incorrect Failure Handling
Finding 8. A small portion of issues come from complex coordina-
tion; all happen in customized abort handling (4 issues).

Incomplete Repair. When using transaction repair to “roll for-

ward” an affected transaction, developers might derive an incom-

plete repair, such that not all affected operations are re-executed.

In Discourse [12], when updating image references of posts, devel-

opers use versions to track individual states of fetched posts from

a query (pseudocode shown in §3.4.1). Though concurrent modi-

fication to a specific post can be precisely detected and repaired,

newly added posts that qualify the query are neglected. As a result,

those new posts will not be processed, and their image references

are thus dangling, presented as broken links to end-users [64]. This

is the only case that has this issue.

Unexpected Intermediate States after Crashes. If an application is

not designed to tolerate intermediate database states and rollback

handlers fail to prevent intermediate states, the application might

fail to provide normal services if crashes occur. For example, in

Spree [81], a crash during check-out can leave payments in an inter-

mediate state (i.e., having the status column equalling "processing").

Since these payments are not rolled back after reboot, Spree can

neither initiate new payment operations due to the unfinished ones

nor resume payments initiated before the crash because they are

considered being “processing” by active threads. Therefore, users

can never finish the check-out [60]. 3 cases have similar issues.

5 PERFORMANCE EVALUATION
This section further investigates the performance of different de-

signs and implementations of ad hoc transactions using actual

application codebases.
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Figure 2: Latencies of different lock implementations. The
invocation latency of synchronized is shown under lock().

Result Summary. First, there are order-of-magnitude performance

differences between different primitive implementations. Disk I/Os

and network round trips are the decisive factors. Second, all four

customized coordination granularities benefit API performance. Ad

hoc transactions perform up to 1.3× better than database transac-

tions in contentious workloads and similarly in no contention work-

loads. Third, for rollback performance, transaction repair achieves

the lowest latency among other rollback methods.

Experiment Setup. For API performance, we developed test clients

to stress chosen application APIs with valid HTTP requests; for

primitive performance, we reused applications’ original implemen-

tations. Applications are tuned according to official guides and

deployed separately from the test client. We use either MySQL

8.0.25/5.7.36 or PostgreSQL 13.5, whichever is defaulted or recom-

menced, as the backing RDBMSs, separately deployed and carefully

tuned. Each machine has 2 × 12 2.20GHz physical cores (Intel Xeon

Processor E5-2650 v4), 128GiB DDR4 memory, and a 1Gbit/s NIC.

5.1 Different Primitive Implementations
We ported all lock implementations to either Java or Ruby mi-

crobenchmarks and evaluated their latencies with a simple work-

load where a client repeatedly invokes lock() and unlock() in a loop.
7

Figure 2 shows the results. The latency differences are of orders of

magnitude. The slowest among them is the RDBMS-based one (DB),
ported from Broadleaf [10], where it performs within a database

transaction first a Select to check if the existence of a corresponding

lock row and then an Update or Insert to acquire the lock. Since

the RDBMS needs to flush writes for durability, and this lock has

the highest latency. The Redis-based locks (KV-SETNX, KV-MULTI),
ported from Mastodon [75], Discourse [12], and Saleor [77], and

the Select For Update–based locks (SFU) all have millisecond-level

latencies. They are much faster than DB because their locking logic

does not involve expensive disk I/O. Interestingly, KV-SETNX is also
faster than KV-MULTI because the former only issues a single Redis

command, while the latter sequentially issues seven (§3.2.1). Finally,

by eliminating all network round trips, those in-memory locks, i.e.,

map-based locks (MEM and MEM-LRU), ported from Broadleaf, and

the synchronized keyword (SYNC) have the best performance.

5.2 Different Coordination Granularities
Ad hoc transactions can perform coordination at granularities

rarely seen in database systems (§3.3). To understand their im-

pact, we chose four real-world APIs, where the four granulari-

ties discussed earlier are employed, denoted as RMW (read–modify–

write), AA (associated access), CBC (column-based coordination), and

7
We skip the evaluation for validation-based implementations because they mainly

differ in the locks that ensure atomicity.

Gran. Application
API(s) Workload (with contention) RDBMS DBT

isolation
RMW
(§3.3.1)

check-out,

Broadleaf [10]

Customers purchase the same

SKU.
MySQL Serializable

AA
(§3.3.1)

like-post,

Discourse [12]

Users like different posts of

seven contented topics.
PostgreSQL Serializable

CBC
(§3.3.2)

create-post &

toggle-answer,

Discourse [12]

Assign distinct topics to user

pairs, where one user creates

posts and one accepts answer.

PostgreSQL

Repeatable

Read

PBC
(§3.3.2)

add-payment,

Spree [81]

Customers submit payment

options for new orders.
PostgreSQL Serializable

Table 6: APIs and setups for evaluating coordination granu-
larities. We obtain no-contention workloads by switching users

to work with different SKUs/topics or existing orders.
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Figure 3: API throughputs using different coordination gran-
ularities.

PBC (predicate-based coordination). We measure each API’s peak

throughput with the original, ad hoc transaction–based codebase

(denoted as AHT) and a modified one using database transactions

with the weakest yet sufficient
8
isolation level instead (denoted as

DBT). Table 6 lists the specific APIs, workloads, and setups. APIs

used in CBC and PBC are previously described in §3.3.2; RMW’s API
is similar to the one described in §3.1.1 but excludes unnecessary

timestamp updates; AA’s like-post API increments the given post’s

like count and updates its parent topic’s total like count.

Figure 3 shows the results. Under contentious workloads, AHT
achieves up to 1.3× higher throughput than DBT and the geometric

mean of improvements is 63.0%. Under no-contention workloads,

AHT and DBT have similar performance. These results confirm our

hypothesis on the potential benefits of using customized coordina-

tion granularities. Specifically, in RMW and AA, acquiring locks early

and aggressively prevents deadlocks in MySQL and write–write

conflicts in PostgreSQL. As a result, conflicting API requests’ non-

critical sections are effectively pipelined with the one active critical

section, improving CPU efficiency. Meanwhile, by coordinating

at a more fine-grained and precise level, CBC and PBC avoid false

conflicts of database transactions. Therefore, more transactions can

be processed and committed in AHT than in DBT.

5.3 Different Rollback Methods
Finally, we evaluate the performance of different rollback methods

with Discourse’s shrink-image API. The API and rollback meth-

ods are previously described in §3.4.1. The chosen API implements

transaction repair to handle errors (denoted as REPAIR). We further

adapt its codebase to implement rollback with Read Committed

database transactions (denoted as DBT-W) and manual rollback (de-

noted as MANUAL). We also built a pure database transaction baseline

by replacing ad hoc transactions with Serializable database trans-

actions (denoted as DBT-S). We use a workload where one thread

8
By sufficiency, we mean an isolation level prevents application inconsistency caused

by anomalies such as lost updates or phantom reads.
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Figure 4: API Latencies using different rollback methods.

invokes shrink-image for different images, each used by eight posts,

and on average two threads concurrently and continuously request

the edit-post API (described in §3.1.2) over posts of each image,

conflicting with shrink-image invocations.

Figure 4 shows the shrink-image latencies, with and without

conflicting edit-post requests. When there are no conflicts, shrink-

image has similar latencies over four configurations since time

is mostly spent on image processing. However, when there are

conflicts, REPAIR shows the lowest API latency, as transaction re-

pair can preserve the work done for unaffected posts. Surprisingly,

DBT-S beats DBT-W and MANUALwith the second-lowest latency. The
reason is that, in the latter two configurations, before shrink-image

aborts, it is blocked for the duration of the conflicting edit-post, as

the post lock used by edit-post is also used in DBT-W and MANUAL
to guard the version check. MANUAL takes longer than DBT-W, as it
needs to issue multiple database operations to roll back database

states while DBT-W only issues one—Transaction Abort.

6 DISCUSSION
We have observed that ad hoc transactions are error-prone and

difficult to identify and understand, but they are still widely used

in critical APIs. Thus, we believe more study is required to under-

stand why developers use ad hoc transactions instead of other more

modular approaches such as database transactions. For example,

are database transactions too inefficient, inconvenient to use, or

lacking critical functionalities? Different answers lead to different

future database research directions. One potential answer is the

lack of critical functionalities. As described in §3.1, certain coordi-

nated business logic exposes characteristics difficult or impossible

for database transactions to handle. For example, database trans-

actions surely fall short when business procedures access multiple

storage backends (§3.1.3). Developers have expressed similar con-

cerns [90]. Another potential reason lies in the performance—we

have found that ad hoc transactions could perform better than

database transactions under contentious workloads and similarly

under no-contention ones (§5). Likewise, developers have expressed

performance concerns, e.g., they want to avoid LLTs [67, 74].

Meanwhile, many existing database systems provide interfaces

for passing hints that customize the coordination. For example,

PostgreSQL provides explicit user locks, where locks are identified

by user-specified integers and scoped by the active session or trans-

action [33, §13.3.5]. However, can they help developers write ad

hoc transactions or even replace them? To answer this question,

we compiled a summary (Table 7a) of supported coordination hints

among the top ten ranking RDBMSs [17] and found that they can in

part prevent errors while retaining the benefits (Table 7b). For ex-

ample, to coordinate only specific database operations (§3.1.1), we

can augment themwith theHOLDLOCK explicit locking hints from

SQL Server [46] inside a Read Committed database transaction. As

Coordination
hints Oracle MySQL,

MariaDB
SQL Server,
Azure SQL PostgreSQL IBM Db2

Explicit table locks ✓ They have different restrictions (e.g., syntax) and

behaviors (e.g., lock modes and conflict handling)Explicit row locks

Explicit user locks ✓ ✓ ✓

Other lock hints

Instance

lock

Priority in

deadlock

handling

Set default

granularity

Per-op isolation ✓ ✓
Savepoints ✓ They differ in syntax and duplicate name handling

Other trans. hints

Autono-

mous trans.

Nested

trans.

(a) Coordination hints supported by the top ten ranking
RDBMSs [17]. We skipped SQLite (ranked six) due to space con-

straints; it supports snapshot-based read-only transactions but none of the

listed ones. We also skipped MS Access (ranked seven) as it is mainly used

for office applications, supporting up to 2GB databases and 255 concurrent

users, and Apache Hive (ranked ten) as it does not support transactions.

Coord. hints Can potentially support Can potentially avoid
Explicit table locks Coarse-grained coord. (§3.3.1) Incorrect lock impl. and ORM-

related misuses (§4.1.1); incor-

rect failure handling (§4.3)

Explicit row locks Coarse-grained coord. (§3.3.1)

and partial coord. (§3.1.1)
†

Per-op isolation

Explicit user locks

Fine-grained coord. (§3.3.2)

and non-db op. (§3.1.3)

Incorrect lock impl. and trans-

action-related misuses (§4.1.1)

†
Work in conjunction with database transactions.

(b) Relationship between coordination hints and ad hoc transactions.

Table 7: Coordination hints supported by existing database
systems and their relationship with ad hoc transactions.

a result, applications only pay the performance cost of ensuring

consistency for specific operations, and developers potentially have

less mental burden as fewer ad hoc constructs are involved.

However, not all ad hoc transactions can benefit from these coor-

dination hints, e.g., OCC primitives are absent. Meanwhile, database

systems usually support only a subset of the listed hints, and for

the same type of hints, they might exhibit different semantics (Ta-

ble 7a). For example, in MySQL, if any table is explicitly locked,

accesses to non-explicitly-locked tables are denied [57, §13.3.6];

other database systems do not have this restriction. Furthermore,

the tight coupling of ad hoc transactions and business logic makes

migration nontrivial. In short, existing database systems have pro-

vided some but not all necessary utilities to address application

demands embodied in ad hoc transactions. Thus, we believe that

new abstractions and tools are needed. Below we discuss a few.

OCC Primitives. The CC of existing major database systems is

based on either 2PL ormultiversion concurrency control (MVCC)[80,

Part 9]. As a result, if the application requires OCC, e.g., to deal

with multi-request interactions (§3.1.2), developers have to craft op-

timistic ad hoc transactions. Therefore, we believe new OCC primi-

tives are required and, given that many systems are closed-source,

they should be provided at the ORM layer. One possible format is an

optimistic transaction declaration,@OptimisticallyTransactional. In-

stead of fully delegating the coordination to database transactions,

ORMs are responsible for internally tracking read/write sets of

each declared optimistic transaction and atomically validating and

committing changes. Another proposal is continuation for optimistic
transactions: save(trans)→tid and restore(tid)→trans, which aid in

handling multi-request interactions. Having ORMs offering boiler-

plate procedures reduces application complexity and the chance of

Session 1: Transaction Processing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

15



errors. Meanwhile, the semantics captured by new interfaces open

up opportunities for further optimization.

Proxy Module for Existing Hints. To expose advanced functionali-

ties of existing database systems while hiding their differences, we

argue for an application-level proxy module that provides general

coordination customization interfaces. This module could be inte-

grated into the ORM system or presented as a standalone system.

For generality, this module should provide fallbacks when the data-

base system in use does not support certain hints. For example, the

module should provide a database table–based lock implementation

as the fallback of explicit user locks.

Development Support Tools. To help improve existing, highly

complex applications coupled with ad hoc transactions, we believe

new development support tools must be devised to help develop-

ers locate ad hoc transactions, identify potential correctness and

performance issues, and fix them by providing reliable suggestions.

Ultimately, such tools should transform most ad hoc transactions

into more modular forms, either database transactions or the new

abstraction mentioned above.

7 RELATEDWORK
Understanding Synchronization in Real Applications. Several stud-

ies have investigated how applications use manual coordination

methods to deal with concurrency. Bailis et al. [5] studied the use

of ORM’s invariant validation APIs to ensure application integrity,

while Warszawski and Bailis [83] focused on using database trans-

actions by web applications. We have discussed and compared

with these works in depth in §2.2. Meanwhile, Xiong et al. [85]

surveyed another type of manual coordination—ad hoc loops over

synchronization variables in multi-threaded programs. Unlike (ad

hoc) transactions, ad hoc loops provide low-level mutual exclusion

to help programs safely access shared in-memory variables instead

of transactional isolation for accessing external databases. Despite

the differences with ad hoc transactions, Xiong et al. have found

that ad hoc loops can also have diverse implementations and are

prone to correctness issues.

Ensuring Correctness of Database-Backed Applications. To build

applications when the underlying data store does not support trans-

actions, Dey et al. [18, 19] propose an application-level protocol,

Cherry Garcia, which provides ACID transactions with Snapshot

Isolation over heterogeneous KV stores, such as Azure Storage and

Google Cloud Storage. Others are concerned with applications di-

rectly operating on KV stores, especially those weakly replicated

ones. Balegas et al. [6] propose to preserve application invariants

by introducing compensation updates to transparently correct in-

consistency caused by weakly consistent replication. Balegas et

al. [7] propose Explicit Consistency, which strengthens eventual

consistency by ensuring specified application invariants during

concurrent execution. They statically analyze application logic

to find unsafe operations and remedy them using either reserva-

tion [56, 58, 79] or conflict-free replicated data types (CRDTs) [78].

Bailis et al. [4] introduce invariant confluence, a property that states

whether a set of transactions can be executed without coordination

while preserving given application invariants, and an analysis to de-

termine this property. Alvaro et al. [1] propose an order-insensitive

programming language, Bloom, which encourages eliminating or-

dering requirements over concurrent events so that application

consistency is respected without coordination [34].

Improving Performance of Database-Backed Applications. The
ideas embodied in ad hoc transactions’ customized coordination can

be found in prior research efforts. We briefly review them below.

Advanced locking methods help reduce false conflicts. Data

association–aware locking methods [26, 40] have been proposed

for object-oriented database management systems (OODBMSs) [2,

3, 8], which are similar to those in ad hoc transactions (§3.3.1). In

OODBMSs, objects are naturally accessed via association relation-

ships, enabling the database to provide this optimization natively.

Whereas in web applications, ORM frameworks hide this access pat-

tern, and developers have to write this optimization manually. To

reduce false conflicts of gap locks, Graefe [27] proposed a method

that combines ghost records (i.e., logically deleted records) with

hierarchical locking [30]. This method splits index intervals when

they are larger than requested key ranges, eliminating false con-

flicts when the original query predicate contains only equality or

range conditions, such as the second example in §3.3.2.

Transaction repair [16, 84] is a technique that uses re-execution

to avoid abort upon conflicts. The key idea is to extract dependen-

cies in the submitted transaction to determine the minimal set of

operations that require re-execution using the latest data. There-

fore, these methods require analyzing transaction logic expressed as

stored procedures before execution. However, web applications sub-

mit transactions interactively instead of stored procedures, keeping

computation logic and dependencies outside the RDBMS.

Meanwhile, many analysis methods are derived for database-

backed applications to identify performance issues. To avoid dead-

locks in web applications, Grechanik et al. [31, 32] proposed a

method that combines runtime monitoring and offline hold-and-

wait cycles detection. Their methods require the knowledge of

outbound SQL statements of the application, while in web applica-

tions, most SQL statements are generated at runtime. Researchers

have also studied performance issues caused by ORMs [87, 88] and

proposed tools to fix them automatically [11, 89].

8 CONCLUSION
This paper presents the first comprehensive study of real-world ad

hoc transactions.We examined 91 cases from 8 popular open-source

web applications and identified the pervasiveness and importance

of ad hoc transactions. We showed that ad hoc transactions are

much more flexible than database transactions, which is a double-

edged sword—they potentially have performance benefits but are

prone to correctness issues.
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