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Abstract

Query rewriting transforms a relational database query into an
equivalent but more efficient one, which is crucial for the perfor-
mance of database-backed applications. Such rewriting relies on
pre-specified rewrite rules. In existing systems, these rewrite rules
are discovered through manual insights and accumulate slowly
over the years.

In this paper, we present WeTune, a rule generator that auto-
matically discovers new rewrite rules. Inspired by compiler super-
optimization, WeTune enumerates all valid logical query plans up
to a certain size and tries to discover equivalent plans that could
potentially lead to more efficient rewrites. The core challenge is to
determine which set of conditions (aka constraints) allows one to
prove the equivalence between a pair of query plans. We address
this challenge by enumerating combinations of “interesting” con-
straints that relate tables and their attributes between each pair
of queries. We also propose a new SMT-based verifier to verify
the equivalence of a query pair under different enumerated con-
straints. To evaluate the usefulness of rewrite rules discovered by
WeTune, we apply them on the SQL queries collected from the 20
most popular open-source web applications on GitHub. WeTune
successfully optimizes 247 queries that existing databases cannot
optimize, resulting in substantial performance improvements.
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• Information systems → Query optimization; • Theory of

computation → Program verification.
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1 Introduction

Database-backed web applications have been the backbone of In-
ternet applications from online shopping to banking. For many
web applications, the database query latency is critical for the user
experience. For example, it has been reported that an increase of
500ms in latency can reduce the traffic of a website by 20% [28],
and users often give up a website when the loading time takes more
than three seconds [41].

Query rewriting, which transforms an original query into a se-
mantically equivalent alternative query [16–18], is an important
step in query optimization. Effective rewrites can accelerate the
execution time of input queries by orders of magnitude [6]. Rewrit-
ing relies on rules that specify the equivalence relations between
queries. Existing rules are typically crafted by human experts and
can take decades to accumulate [16–18, 27, 36, 37, 42, 44].

However, it is insufficient to rely on manual efforts to discover
rewrite rules. The rich feature and subtle semantics of the query
language make it challenging to prove equivalence [7, 10, 20] and
to craft rules. As a result, the set of hand-written rewrite rules
grows very slowly and misses many rewrite opportunities. The
situation is made worse by the prevalent use of object-relational-
mapping (ORM) frameworks in web application development. ORM
frees programmers from explicitly constructing SQL queries but
also results in non-intuitive queries whose patterns evade rules
crafted by humans. To understand the impact of missed rewrites,
we studied 50 real-world queries in several popular open-source
web applications on Github. All of these queries have been rewritten
by the developers to fix their performance issues. Even the latest
version of SQL Server fails to rewrite 27 of these queries (54%) to
a more efficient form as fixed manually by the developers. One
such query incurs latency up to 37 seconds, while its equivalent
rewritten one only takes 0.3 seconds [21] (details in §2.2).

In this paper, we propose WeTune, a rule generator that can
automatically discover new rewrite rules without any human effort.
Drawing inspiration from compiler superoptimization [2, 33], which
finds a semantically equivalent optimal code sequence through the
exhaustive search, WeTune aims to discover rewrite rules automat-
ically via brute-force enumeration of all potential rules followed by
a correctness check of each generated rule. During this discovery
process, WeTune relies on heuristics to filter out those rules that
are unlikely to improve performance, aka rules whose rewritten
query contains more operators of each type than the original query.
The remaining rewrite rules are deemed promising. We empirically
determine the usefulness of these promising rules by using them to
rewrite real world queries and measure the performance benefits
of rewritten queries over synthetically generated database tables.
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Those that result in beneficial rewrites are useful rules discovered
by WeTune.

Although the high-level approach is simple, there are several
challenges. First, how to represent rewrite rules in a general form
that allows enumeration? Second, how to automatically verify the
correctness of enumerated rules without human effort? To address
these challenges, WeTune represents a rewrite rule as a pair of
query plan templates together with a set of constraints that relate
the templates to each other. It enumerates all possible query plan
templates up to a threshold number of operators. A query plan tem-
plate is generic in that it uses symbols instead of concrete names
to represent tables, columns and predicates. WeTune further enu-
merates all constraints, which are conditions that could potentially
make a pair of enumerated plan templates semantically equivalent.
For instance, specific input relations of the two queries could be
constrained to be the same, or the attributes used in a projection
are restricted to be a subset of attributes in a certain relation. We-
Tune verifies the correctness of each rewrite rule using the SQL
verifiers. It includes a built-in verifier, which provides a formal way
of modeling rewrite rules as SMT formulas. Then the correctness
problem can be automatically solved with an SMT solver. Besides
the built-in verifier, WeTune also can support using existing SQL
verifiers such as SPES to prove the correctness.

We have evaluated the effectiveness of WeTune on real-world
database-backed applications using the 20 most popular web ap-
plications on GitHub. WeTune outputs 1106 promising rewrite
rules, 35 of which are used to optimize queries of these applica-
tions. Furthermore, our results show that WeTune can successfully
optimize 247 queries that are missed by existing systems, result-
ing in a latency reduction of up to 99%. Such optimization is due
to WeTune’s ability to discover new rewrite rules not known to
any of the existing systems. WeTune can successfully verify the
discovered rewrite rules.

In summary, our work makes the following contributions:
• A study showing that existing manually-discovered rewrite rules
are insufficient for real-world queries in popular web applica-
tions.

• A demonstration that the enumeration approach introduced in
compiler superoptimization can be applied in databases to gener-
ate query rewrite rules automatically.

• The formal modeling of database query rewrite rules to allow
encoding to SMT formulas, which allows WeTune to verify the
correctness of new rewrite rules.

• An evaluation of WeTune on a variety of real-world applications,
which shows that it can successfully optimize 247 queries with
substantial performance improvement.

2 Motivation

In this section, we examine the rewriting opportunities that existing
commercial and open-source databases miss. Then, we study the
impact of missed rewrites which cause developers to change a query
into a more efficient form manually.
2.1 Insufficiency of Existing Rewrites

Existing databases already use a large number of rules to perform
rewrites [16–18, 27, 36, 37, 42, 44]. Nevertheless, we have found
that many queries still fail to be rewritten into a more efficient form
by existing rules. This finding might come as a surprise: after all,

Original Query Opt. By Existing DB Ideal (WeTune)

q0: SELECT * FROM labels

WHERE id IN (

SELECT id FROM labels

WHERE id IN (

SELECT id FROM labels

WHERE project_id =10

) ORDER BY title ASC)

q1: SELECT *

FROM labels

WHERE id IN (

SELECT id

FROM labels

WHERE

project_id =10)

q2: SELECT *

FROM labels

WHERE

project_id =10

q3: SELECT id FROM notes

WHERE type='D'

AND id IN (

SELECT id FROM notes

WHERE commit_id =7)

Unchanged
q4: SELECT id

FROM notes

WHERE type='D'

AND commit_id =7

Table 1: Examples of the counter-intuitive queries generated

by the ORM framework found in GitLab. The first column

lists the original queries. The second one lists the best opti-

mization results of the existing DB systems. The third one

lists the ideal results, which can be achieved with the rules

generated byWeTune. labels.id and notes.id are the primary

keys of the tables, respectively.

decades of efforts have been spent on crafting rewrite rules, should
not most—if not all—rules have been discovered already?

To see whymanual rewrite rules are insufficient, wewant to keep
in mind that these rules, more or less, are designed for SQL queries
written directly by programmers. Human-written queries usually
follow intuitive patterns which can be manually analyzed to distill
useful rules. However, in modern web development, programmers
no longer explicitly construct SQL queries. Rather, they typically
make use of an object-relational-mapping (ORM) framework, which
allows them to write object-oriented code to manipulate contents
in the database. The underlying framework automatically generates
SQL queries based on application logic. Not only are the resulting
SQL queries generated by ORM opaque to programmers, but also
they can be counter-intuitive to human rule developers. Table 1
shows two examples from the web application GitLab [15], a pop-
ular open-source version management website. Both SQL queries
were generated by the ORM framework (ActiveRecord) as the result
of running developers’ Ruby code.

The first query 𝑞0 aims to select all the git merge requests whose
project_id is “10”. Specifically, it uses a subquery to compute the
set of id values whose project_id is “10” according to the labels
table. It then selects all rows from the labels table whose id falls
within this set of subquery values. This query is counter-intuitive
and inefficient in two places. First, the subquery to compute match-
ing ids contains another inner subquery and the two subqueries
are almost identical. Second, the ORDER BY clause of the inner
subquery is unnecessary because the outermost IN operator treats
the subquery SELECT...ORDER BY as an unordered list 1. Ideally,
the redundancies in the query should be identified by the query
optimizer via a rewrite rule, so that the resulting optimized query
resembles 𝑞2 as shown in Table 1. However, among MySQL, Post-
greSQL, and MS SQL Server, only PostgreSQL and MS SQL Server
can partially rewrite the query to 𝑞1 which removes ORDER BY
and one of the two subqueries.

1Such behavior follows the SQL standard [22], and is confirmed in MySQL, PostgreSQL
and Oracle DB. MS SQL Server explicitly denies such a query and reports the error
“ORDER BY is disallowed in subquery”.
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Another query in Table 1 (q3) fetches id values from the notes
table whose type is “D” and column_id is “7”. For this query, the IN-
selection is redundant because (1) the table used in the subquery is
identical to the table used outside, which is the notes table; (2) The
column projected by the subquery is the same as the column used
in IN-selection, which is the primary key of the notes table. Hence,
the subquery can be eliminated and the query could be transformed
into a simple query as 𝑞4. Unfortunately, all three existing databases
(MySQL, PostgreSQL and MS SQL Server) miss such opportunities
and keep the query unchanged.

The above inefficient structures are unlikely seen in human-
generated queries but are common for queries generated by ORM.
Since the ORM-generated query results from running application
code in different program locations or even third-party libraries,
developers are agnostic to potential redundancies (e.g., duplicate
subqueries) and inefficiency (e.g., unnecessary ORDER BY). There-
fore, it is very difficult for developers to identify and fix the resulting
performance issues.

2.2 Impact and Scope of Missed Rewrites

To better understand the impact of missed rewrites on real-world
queries, we studied GitHub issues related to query performance in
several popular web applications, including Discourse (discussion
forum), GitLab (code management) and Spree (e-commerce) etc.
Some are written in Ruby, while others are in Java (the full list
can be found in our extended version [49]). The applications are
chosen based on popularity, judged by the number of stars on
GitHub [11, 13, 15, 25, 39, 40, 43, 46].

We manually inspected 50 GitHub issues related to query per-
formance, with 15 from Discourse [25], 25 from GitLab [15], 4 from
Spree [11], 2 from Redmine [43], and 4 from others [13, 39, 40, 46].
For all the 50 queries in our study, developers have fixed them by
manually rewriting the original SQL query into a more efficient
form, as the databases used by the application failed to rewrite these
queries in the same efficient way. We have investigated whether
state-of-the-art optimizers in different databases can rewrite these
queries. Among these 50 queries, 27 queries (54%) cannot be rewrit-
ten into the desired forms in issues by the latest version of SQL
Server (7 of them are similar to the examples in Table 1). The rewrit-
ers in MySQL, PostgreSQL, and Apache Calcite (including both
Hep and Volcano Planner) perform even worse, failing to rewrite 38
(76%), 41 (82%), 47 (94%) and 46 (92%) of these queries, respectively.
Our study shows that, although opportunities exist for many exist-
ing queries to be rewritten to a more efficient form, state-of-the-art
manually curated rules miss such rewrites.

Among the Github issues in our study, a few of them [4, 21, 35,
48] give concrete numbers on the performance impact after the
manual rewrite. For the example in [21], the original query latency
can be up to 37 seconds, while the manually rewritten query only
takes 0.3 seconds. Such latency difference is due to the optimizer
failing to replace an IN-subquery with an INNER JOIN, which
prevents the optimizer from selecting a better access path. The
other issues [4, 35, 48] also lead to the 75%-99% latency reduction
for their respective applications. Unfortunately, it is difficult to
diagnose and resolve these performance problems. In particular, for
these 50 issues, it took 13 months on average to fix one (via manual

Rule Enumerator 
(Section 4)

Rule Verifier

(Section 5)

 


WeTune

Potential
Rule T / F

Built-in
Verifier SPES

xVerified Rules

Useful Rule
Selector


(Section 6)

xReal-world
Queries

xUseful Rules

Database
Query

Perf.

Figure 1: The architecture of WeTune.

query rewrite). As developers do not directly write SQL but access
the database via an ORM, they have less visibility and control over
the final queries.

3 Our Approach

Manually crafted rewrite rules are no longer sufficient in an era
where queries are automatically generated by web frameworks.
To optimize these auto-generated queries, we need an automated
approach to discover rewrite rules.

Basic Idea. WeTune aims to automatically discover new useful
rewrite rules without any human effort. It is inspired by compiler
superoptimization, especially peephole optimizer [2]. The peephole
optimizer aims to transform a sequence of machine instructions
into another equivalent but faster sequence and thus has a similar
high-level goal as a database query optimizer. Peephole optimizers
can automatically discover optimization rules via some form of
brute-force search for the instruction sequences [2]. Inspired by
this approach, we propose to automatically discover promising
query rewrite rules through simple brute-force enumeration and to
ensure the correctness of discovered rules through verification.

More concretely, WeTune’s search for useful rewrite rules pro-
ceeds in two stages. In the first stage, WeTune discovers promising
rules by enumerating the potential rewrite rules with the Rule

Enumerator (§ 4) and verifying their correctness using the Rule
Verifier (§ 5). We propose a new SMT-based verifier but WeTune
can also use other verifiers (e.g. SPES [50]). In this stage, WeTune
uses simple heuristics to filter out those rules that are unlikely to
bring performance improvement; only promising rules are kept. In
the second stage, WeTune empirically determines the usefulness
of promising rules by using them to rewrite real-world queries and
measuring the performance of the rewritten queries (§ 6). Figure 1
shows the overall architecture of WeTune.

Our high-level approach is straightforward. However, to make
it work, we must resolve several technical challenges that face rule
enumeration and verification. These challenges are unique to query
rewriting and not present in compiler optimization.
(1) How to represent a rewrite rule to make it amicable to enu-

meration? A rule consists of a pair of queries, which must be
generic and not bound to concrete tables and columns. How to
enumerate generic queries and make a source query equivalent
to a destination query? (Section 4)

(2) How to determine whether an enumerated rewrite rule is cor-
rect? Can we adopt an existing query equivalence checker that
requires concrete queries to work with generic queries? Can
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Constraints

1. Relations t2,t2',t4 are the same
2. Relations t1,t3 are the same
3. Attributes c0,c0',c1 are the same
4. c0,c0' are attributes of t1

InSub

<c0>

Input

t1

Input

t2

Source Template Destination Template

InSub

<c0'>

Input

t2'

InSub

<c1>

Input

t4

Input

t3

q5: ... FROM T WHERE T.x IN (SELECT R.y FROM R)

AND T.x IN (SELECT R.y FROM R)

q6: ... FROM T WHERE T.x IN (SELECT R.y FROM R)

Figure 2: An example rule found byWeTune (No.4 in Table 7).

It can eliminate redundant IN-subquery operator of a SQL

query such as 𝑞5, and rewrite it into 𝑞6. Existing databases

miss the opportunity to rewrite such a counter-intuitive

queries.

we develop a new verifier to address the limitations of existing
checkers? (Section 5)

4 Rule Enumerator

WeTunemodels the rewrite rule as a triple<𝑞src, 𝑞dest ,𝐶>, where
𝑞src is a source query plan template, 𝑞dest is a destination query
plan template and 𝐶 is a set of constraints. A query plan template
is a fragment of the logical query plan tree whose operators in-
clude selection, projection, etc. Unlike those in a concrete query,
the table names, attributes and predicates in a query plan template
are symbolic. The constraint set 𝐶 consists of a set of predicates,
each of which describes some relationship between the symbols
from the source and destination query plan templates. The rule
specifies that if all constraints in 𝐶 are satisfied, then 𝑞src and 𝑞dest
are semantically equivalent. Given a SQL query 𝑞, if some fragment
in 𝑞 matches 𝑞src , the matched fragment can be replaced with the
corresponding fragment 𝑞dest that satisfies 𝐶 .

Figure 2 shows an example rewrite rule which can eliminate
redundant IN-subquery in a SQL query. The source template 𝑞src is
represented as InSub𝑐0(InSub𝑐0′ (t1, t2), t2’). The operator InSub𝑐0
has a left child InSub𝑐0′ and a right child t2’. InSub is an opera-
tor in the query plan template which represents IN-subquery. It
represents the queries (e.g., 𝑞5) with two IN-subquery operators,
and these two IN-subquery are connected by AND. The destination
template 𝑞dest is InSub𝑐1(t3, t4). The constraint set 𝐶 specifies the
following constraints: 𝑡2, 𝑡2′ and 𝑡4 are the same relations; 𝑡1 and
𝑡3 are the same relations; 𝑐0, 𝑐0′ and 𝑐1 are the same attributes. The
figure also shows a SQL query 𝑞5 derived from Gitlab [15]. This
query matches 𝑞src . Thus, it can be replaced by a better query 𝑞6
which follows the pattern specified by 𝑞dest under the constraints
in 𝐶 . This inefficiency pattern is quite counter-intuitive as its two
inner subqueries are almost identical. However, none of our studied
DBs can successfully optimize this query.

The Rule Enumerator enumerates potential rewrite rules. To do
so, it first enumerates all possible plan templates (Section 4.1). To
restrict the search space, it bounds the template size so that the
number of operators in a template is within some small threshold.
Then, for every pair of plan templates, it enumerates all potential
constraints (Section 4.2). Last, it selects the promising rules which
are likely to improve the query performance (Section 4.3).

size=2 Proj
Sel

Sel
Sel

......

Sel
Sel
Input

Proj
Sel
Input

...

...
...

...

...

Figure 3: The example of enumerating query plan templates.

A blue block denotes an operator with one input, while a

yellow block denotes an operator with two inputs.

4.1 Plan Template Enumerator

The query plan template is a tree whose nodes are relational algebra
operators with symbolic inputs or parameters [16, 18]:

Operator. Each operator takes one or two relations as input
(except Input operator itself), performs algebraic computation ac-
cording to its semantic, and outputs a single relation. Currently,
WeTune only supports the operators in Table 2.

Symbol. In a concrete query plan, operators can be parameter-
ized by concrete schema information such as column names, etc. In
a query plan template, such concrete parameters are replaced with
symbolic ones. There are three kinds of symbols:
• Relation Symbol. A relation symbol rel (𝑟 for short) represents a
relation. It is used to parameterize the input relation of a plan
template. e.g., t1, t2, t2’, t3 and t4 in Figure 2.

• Attribute list Symbol. An attribute list symbol attrs (𝑎 for short)
represents a sequence of attributes. In Figure 2, c0, c0’ and c1 are
attribute lists. Each of them contains at least one attribute. Addi-
tionally, each relation symbol r is associated with an attribute
list symbol 𝑎r that represents all the attributes in 𝑟 .

• Predicate Symbol.A predicate symbol pred (𝑝 for short) represents
a predicate, which takes zero or more values as input and yields a
boolean value. It is used to parameterize the predicate expression
of the selection operator.
The enumeration strategy of WeTune separately enumerates

a query plan’s tree structure and the operator types for each tree
node. More concretely, the enumeration is done in three steps: first,
WeTune constructs all possible tree structures with two kinds of
internal tree nodes: one type is the node having one child, and
another type is the node having two children; Second, for each tree
structure, it exhaustively assigns the operators listed in Table 2 to
every node to enumerate concrete trees. The number of operator’s
inputs should match the number of the node’s children; Last, it adds
Input nodes as the leaf nodes’ children. Figure 3 shows the process of
enumerating query plan templates having two operators. To reduce
the enumeration space, WeTune only enumerates templates up
to 4 operators excluding the Input nodes. Furthermore, it filters
out those templates that lead to an invalid SQL query, such as
misplacing the Deduplication operator.

4.2 Constraint Enumerator

WeTune pairs the enumerated templates as<𝑞src, 𝑞dest>, and searches
for the constraint set that would turn the pair of templates into
a valid rewrite rule. A constraint is a predicate that specifies the
relationship between symbols in 𝑞src and 𝑞dest . To bound the search
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Operator Name Symbol #Input Description

Input Input𝑟 0 Input𝑟 () represents an initial input relation specified by 𝑟 .
Projection Proj𝑎 1 Proj𝑎 (𝑅) projects its input relation 𝑅 on attributes specified by 𝑎.

Selection Sel𝑝,𝑎 1 Sel𝑝,𝑎 (𝑅) discards tuples in its input relation R that do not satisfy the predicate 𝑝 .
Values on attributes 𝑎 from 𝑅 are used to evaluate the predicate p. .

In-Sub Selection InSub𝑎 2 InSub𝑎 (𝑅𝑙 , 𝑅𝑟 ) discards tuples in the left input 𝑅𝑙 that are absent in the right input 𝑅𝑟 .
Values on attributes 𝑎 from 𝑅𝑙 are used for the presence check.

(Inner/Left/Right) Join (I/L/R)Join𝑎𝑙 ,𝑎𝑟 2
IJoin𝑎𝑙 ,𝑎𝑟 (𝑅𝑙 , 𝑅𝑟 ) Cartesian products its input relations 𝑅𝑙 and 𝑅𝑟 ,

then discards the tuples that have mismatched values on attributes 𝑎𝑙 and 𝑎𝑟 .
(L/R)Join additionally keeps the mismatched tuples and fills NULL on the right/left-side attributes.

Deduplication Dedup 1 Dedup(𝑅) discards duplication of tuples in its input relation 𝑅.

Table 2: SQL operators supported by WeTune.

space, we consider the following limited set of constraints, drawn
from our experience of studying existing rewrite rules and examin-
ing developers’ manual query rewrites.

• RelEq(rel1, rel2). This constraint indicates that two relation sym-
bols, 𝑟𝑒𝑙1 and 𝑟𝑒𝑙2, are equivalent (i.e., contain the same tuples).

• AttrsEq(attrs1, attrs2). This constraint indicates that two attribute
list symbols, attrs1 and attrs2 , have the same sequence of at-
tributes.

• PredEq(pred1, pred2). This constraint indicates that two predicate
symbols, pred1 and pred2 , are equivalent (i.e. pred1 ⇔ pred2).

• SubAttrs(attrs1, attrs2). This constraint indicates that each attribute
in attrs1 is also in attrs2 . It can be used to express which relations
an attribute list is from. For example, in Figure 2, SubAttrs(c0, at1)
indicates that each attribute in 𝑐0 corresponds to some column
from table 𝑡1.

• RefAttrs(rel1, attrs1, rel2, attrs2). This constraint indicates that any
value in the relation rel1 on the attribute attrs1 is also in rel2 on
attrs2 .

• Unique(rel, attrs). This constraint indicates that every value in
rel on attrs is unique.

• NotNull(rel, attrs). This constraint indicates that every value in
rel on attrs is not NULL.

Given a pair of plan templates <𝑞src, 𝑞dest>, constraint enumera-
tion generates the set C∗, which contains all possible constraints
related to 𝑞src and 𝑞dest . This is done by exhaustively filling in the
parameters of constraints above with the symbols in 𝑞src and 𝑞dest .
We use C∗ later in the search for promising rules.

4.3 Searching for Promising Rules

Given a pair of query templates <𝑞src, 𝑞dest>, and constraint set𝐶∗

which includes all constraints related to 𝑞src and 𝑞dest , WeTune
needs to search for some subset𝐶 of C∗ which makes 𝑞𝑠𝑟𝑐 and 𝑞𝑑𝑒𝑠𝑡
semantically equivalent. Furthermore, we keep only those valid
rules which are deemed promising.

A rule of <𝑞src, 𝑞dest ,𝐶> is promising if it satisfies the following
two requirements: first, 𝐶 is the most relaxed constraint set, such
that the removal of any constraint in𝐶 compromises the correctness
of the rule. In other words, 𝐶 is the minimal constraint set that
enables the equivalence between 𝑞src and 𝑞dest ; Second, 𝑞dest does
not have more operators of each type than 𝑞src . With this heuristic,
rewrite rules will simplify rather than complicate the source query,
thus are more likely to improve the query performance.

Algorithm 1: Search for Promising Rules
1 EnumerateRules(𝑘):

2 𝑇 := EnumerateTemplates(𝑘)
3 𝑅 := ∅
4 foreach <𝑞src, 𝑞dest> ∈ 𝑇 ×𝑇 do
5 if 𝑞dest is not simpler than 𝑞src then continue
6 𝐶∗ := EnumerateConstraints(𝑞src, 𝑞dest )
7 C := SearchRelaxed(𝑞src, 𝑞dest ,𝐶∗)
8 𝑅 := 𝑅 ∪ {<𝑞src, 𝑞dest ,𝐶> | 𝐶 ∈ C}
9 return 𝑅

10 SearchRelaxed(𝑞src, 𝑞dest ,𝐶
∗):

11 if ¬ProveEq(𝑞src, 𝑞dest ,𝐶∗) then return ∅
12 C := ∅
13 foreach 𝑐 ∈ 𝐶∗ do
14 C := C ∪ SearchRelaxed(𝑞src, 𝑞dest ,𝐶∗ − {𝑐 })
15 if C = ∅ then return {𝐶∗ }
16 else return C

Algorithm 1 shows the basic algorithm to search for promising
rules. It first enumerates all query templates, as described in Sec-
tion 4.1. Then, it pairs the enumerated templates as <𝑞src, 𝑞dest>
and keeps those whose 𝑞dest has the same or fewer operators of
each type than 𝑞src (Line 5). For each pair <𝑞src, 𝑞dest>, it generates
constraint set 𝐶∗ by enumerating all possible constraints related
to 𝑞src and 𝑞dest . Last, it invokes SearchRelaxed to recursively
search for the subsets of 𝐶∗ to form the promising rules.

The function SearchRelaxed starts with 𝐶∗, and iteratively
relaxes the constraint set by removing one constraint (Line 14) and
verifies the resulting rule correctness (Line 11). Specifically, it uses
an underlying verifier to prove the equivalence between 𝑞src and
𝑞dest under the constraints in 𝐶 (Section 5). If the verification fails,
we know the constraint set is too relaxed to imply the equivalence.
In this case, we stop further relaxing and traceback (Line 11). If no
constraint can be further removed, we have found the most relaxed
constraint set (s) (Line 15). Note that there could be multiple most
relaxed sets, and SearchRelaxed tries to find all of them. This is
why it returns a set of sets, and each member is a most relaxed set.

To reduce the search cost, WeTune introduces the following
methods: first, it excludes the useless constraints from 𝐶∗. A con-
straint is considered useless if it only involves the symbols in 𝑞dest
or leads to an illegal query plan; Second, instead of examining every
subset of𝐶∗, it only checks the subsets which are both closures and
non-conflicting. A subset is a closure if it cannot imply any con-
straint absent from the set. Meanwhile, a subset is non-conflicting
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if no constraints in the subset conflict with each other. Two con-
straints have a conflict if putting them together will introduce an
illegal plan. Last, WeTune skips checking the constraint set 𝐶 if
it can be implied by a constraint set 𝐶 ′, and 𝐶 ′ has already been
proved to make 𝑞src and 𝑞dest equivalent.

5 Rule Verifier

WeTune depends on the rule verifier to ensure correctness. A rule
<𝑞src, 𝑞dest ,𝐶> is correct if the source and destination query plan
templates are semantically equivalent when the constraints hold.
We design a rule verifier based on FOL (first-order logic) formulation
(Section 5.1). WeTune can also use an existing SQL equivalence
checker such as SPES [50] to verify rules (Section 5.2).

5.1 Built-in Rule Verifier

At the high level, WeTune’s built-in verifier works by first repre-
senting a rule <𝑞src, 𝑞dest ,𝐶> as a U-semiring expression [8], and
then converting the expression into FOL formulas. Finally, the FOL
formulas are verified using an SMT solver.

5.1.1 Formal Representation of Rules
Given a rewrite rule, we use U-expression [8] to represent 𝑞src

and 𝑞dest , and use FOL formulas to specify the constraint set 𝐶 .
U-expression. Inspired by UDP [8], we also use U-expressions

to model SQL queries under the bag semantics, which capture the
multiplicity of a tuple in the relation. Under this representation, a
query is viewed as operations on a semiring of natural numbers [8,
19]. We adopt the terms defined in UDP [8], which are summarized
below:
• ⟦R⟧(𝑥 ) returns the multiplicity of the tuple 𝑥 in the relation R.
• [𝑏] ≜ if 𝑏 then 1 else 0. Since this expression converts a boolean
value to an integer, it can be used to turn a predicate into a
U-expression.

• ||𝑒 | | ≜ if 𝑒 > 0 then 1 else 0, where 𝑒 is a U-expression. It models
Deduplication.

• not(𝑒) ≜ if 𝑒 > 0 then 0 else 1, where 𝑒 is a U-expression. It
models the negation of a predicate.

• ∑
𝑡 ∈D 𝑓 (𝑡 ) ≜ 𝑓 (𝑡0) + 𝑓 (𝑡1) + · · · , for all 𝑡𝑖 ∈ D, where D is a tuple

set called summation domain, and 𝑓 is a function D → N . By de-
fault, D is an infinite set containing all possible tuples. ∑𝑡 ∈D 𝑓 (𝑡 )
models Projection.
In order to model a query plan made out of different opera-

tors, these terms are connected by “+” and “∗”, which have the
same meaning as that of natural numbers. For example, we can use
| |∑𝑥 [𝑡 = 𝑥 .𝑘] × ⟦R⟧(𝑥) × [𝑥 .𝑎 > 12]| | to denote the multiplicity of
the tuple 𝑡 in the output relation of “SELECT DISTINCT x.k FROM
R AS x WHERE x.a>12”. The summation can be omitted if the pro-
jection retains all attributes. For example, | |⟦𝑅⟧(𝑡 ) × [𝑡 .𝑎 > 12]| |
can represent the multiplicity of the tuple 𝑡 in the output relation
of “SELECT DISTINCT * FROM R AS x WHERE x.a > 12”. In the fol-
lowing paragraphs, we omit D in summation and just write ∑

𝑡 𝑓 (𝑡 ),
where 𝑡 is the summed variable of the summation.

Converting the query template into U-expression.WeTune
translates each query template 𝑞 to a function ⟦𝑞⟧(𝑡 ) : Tuple → N,
which takes a tuple 𝑡 as input and returns its multiplicity in the out-
put relation of the query template. The multiplicity is represented as

Operator Expression

Input𝑟 𝑓 (𝑡 ) B 𝑟 (𝑡 )
Proj𝑎 𝑓 (𝑡 ) B ∑

𝑡𝑙
(𝑓𝑙 (𝑡𝑙 ) × [𝑡 = 𝑎(𝑡𝑙 )])

Sel𝑝,𝑎 𝑓 (𝑡 ) B 𝑓𝑙 (𝑡 ) × [𝑝(𝑎(𝑡 ))]
InSubSel𝑎 𝑓 (𝑡 ) B 𝑓𝑙 (𝑡 ) × | |𝑓𝑟 (𝑎(𝑡 )) | |×not([IsNull(𝑎(𝑡 ))])

IJoin𝑎𝑙 ,𝑎𝑟
𝑓 (𝑡 ) B ∑

𝑡𝑙 ,𝑡𝑟
([𝑡 = 𝑡𝑙 · 𝑡𝑟 ] × 𝑓𝑙 (𝑡𝑙 ) × 𝑓𝑟 (𝑡𝑟 ) × [𝑎𝑙 (𝑡𝑙 ) = 𝑎𝑟 (𝑡𝑟 )]

× not([IsNull(𝑎𝑙 (𝑡𝑙 ))]))

LJoin𝑎𝑙 ,𝑎𝑟
𝑓 (𝑡 ) B (IJoin Expr.) + ∑

𝑡𝑙 ,𝑡𝑟
([𝑡 = 𝑡𝑙 · 𝑡𝑟 ] × 𝑓𝑙 (𝑡𝑙 ) × [IsNull(𝑡𝑟 )] ×

not(∑𝑡′𝑟 (𝑓𝑟 (𝑡
′
𝑟 ) × [𝑎𝑙 (𝑡𝑙 ) = 𝑎𝑟 (𝑡 ′𝑟 )] × not([IsNull(𝑎𝑙 (𝑡𝑙 ))])))

RJoin𝑎𝑙 ,𝑎𝑟 (symmetric to LJoin)
Dedup 𝑓 (𝑡 ) B | |𝑓𝑙 (𝑡 ) | |

Table 3: The rules to translate the SQL operator into U-

expression. Each U-expression is a function taking a tuple

𝑡 and returning its multiplicity in the relation produced by

the operator. 𝑓𝑙 and 𝑓𝑟 represent the U-expressions of the

operator’s left and right children, respectively. 𝑡 = 𝑡𝑙 · 𝑡𝑟 is a
predicate requiring 𝑡 is the concatenation of 𝑡𝑙 and 𝑡𝑟 .

Example SQL 𝑞5: ... FROM T WHERE T.x IN (S) AND T.c IN (S)
𝑞6: ... FROM T WHERE T.x IN (S)

Templates 𝑞src : InSuba(InSuba(𝑟0, 𝑟1), 𝑟1)
𝑞dest : InSuba(𝑟0, 𝑟1)

⟦qsrc⟧(t) B𝑟0(𝑡 ) × not([IsNull(𝑎(𝑡 ))]) × | |
∑︁
𝑥

𝑟1(𝑥 ) × [𝑥 = 𝑎(𝑡 )] | |

× not([IsNull(𝑎(𝑡 ))]) × | |
∑︁
𝑥

𝑟1(𝑥 ) × [𝑥 = 𝑎(𝑡 )] | |

⟦qdest⟧(t) B𝑟0(𝑡 ) × not([IsNull(𝑎(𝑡 ))]) × | |
∑︁
𝑥

𝑟1(𝑥 ) × [𝑥 = 𝑎(𝑡 )] | |

Figure 4: The U-expressions of the rewrite rule in Figure 2. 𝑆

denotes the entire subquery of “SELECT R.y FROM R”. 𝑞src and
𝑞dest are the source and destination templates. The symbols of

𝑎, 𝑟0 and 𝑟1 in the templates represent T.x, T, and the relation

produced by S in the example SQL accordingly.

a U-expression. Unlike UDP [8] which performs the translation to
U-expression for concrete queries, WeTune translates for symbolic
query templates. The translation involves two steps:

Step 1. Translating the symbols in the query template. We use
uninterpreted functions to enable the translation:

• Each relation symbol rel corresponds to a function ⟦𝑟⟧(𝑡 ) : Tuple →
N that takes a tuple 𝑡 as input and returns its multiplicity in rel.

• Each attribute list symbol attrs corresponds to a function ⟦𝑎⟧(𝑡 ) :
Tuple → Tuple that takes a tuple 𝑡 as input, projects it on the
attributes in attrs and returns the projected tuple.

• Each predicate symbol pred corresponds to a function ⟦𝑝⟧(𝑡 ) :
Tuple → Bool that takes a tuple 𝑡 as input and returns whether
the tuple satisfies pred.

For brevity, we omit ⟦⟧ whenever there is no ambiguity. For exam-
ple, 𝑟 (𝑡 ) denotes the application of a relation function.

Step 2. translating the plan structure. This is done by recursion
on the tree structure, as depicted by Algorithm 2. The function
ToUExpr takes a (sub-)plan template as input. It returns the trans-
lated expression and a representative tuple of the output relation.
For each operator, the algorithm recursively calculates the expres-
sions of its children, then looks up in Table 3 to build its own
expression based on its children’s expressions. Figure 4 shows the
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translated U-expression of the example in Figure 2. We will discuss
the IsNull predicate next.

Algorithm 2: Translate Plan to U-expression
1 ToUExpr(𝑞):

2 <𝑓𝑙 , 𝑡𝑙> := ToUExpr(q.child[0]) //None if no child
3 <𝑓𝑟 , 𝑡𝑟> := ToUExpr(q.child[1]) //None if single child
4 return TranslateByTable3(𝑞, 𝑓𝑙 , 𝑡𝑙 , 𝑓𝑟 , 𝑡𝑟 )

Handling NULL. One of the biggest limitation of UDP’s model-
ing of SQL query is its assumption that none of the attributes in a
relation is NULL. Consequently, UDP cannot support the OUTER
JOIN operator. According to our study, more than half of SQL
queries collected from the web application involve such operators.
To handle both NULL and OUTER JOIN, WeTune’s translation of
U-expression takes into consideration the impact of NULL on the
operators, as shown in Table 3. Supporting other operators such as
aggregation is trickier and left as future work.

For operator Input𝑟 , the expression 𝑟 (NULL) returns the multi-
plicity of NULL tuples 2 in the input relation; For Proj𝑎 , 𝑓 (NULL)
= ∑

𝑡𝑙 (𝑓𝑙 (𝑡𝑙 ) × [NULL = 𝑎(𝑡𝑙 )]) will return the multiplicity of tuples
from 𝑡𝑙 whose attribute 𝑎 isNULL; For Sel𝑝,𝑎 , some predicate 𝑝 such
as “>” and “<” will return unknown on evaluating NULL. When 𝑎(𝑡 )
is NULL and 𝑝(𝑎(𝑡 )) returns unknown, [𝑝(𝑎(𝑡 ))] will return 0, which
is the same as [false]. Here, we are able to treat the unknown in the
three-valued logic as the false in two-valued logic, as Sel𝑝,𝑎 only
evaluates the tuple that makes the predicate 𝑡𝑟𝑢𝑒 ; For Dedup, it re-
turns 1 if there is at least one NULL tuple in the relation, otherwise
0.

To model the impact of NULL on the other operators in Table 3,
WeTune introduces a new predicate IsNull to U-expression. When
𝑥 is NULL, IsNull(𝑥) returns true and [IsNull(𝑥)] is 1. With such
predicate, WeTune is able to filter out the NULL tuples. In detail,
for InSubSel𝑎 (IN-subquery), it uses the IsNull predicate to filter
out the NULL tuple from the outer query. For INNER JOIN, it uses
the IsNull to filter out the cases that left or right relation has NULL
tuples. We will discuss how to handle NULL for OUTER JOIN in
the next paragraph.

SupportingOuter Join operators.WeTune supports theOUTER
JOIN operator by using the specific rule in Table 3 based on the
modeling of NULL. Unlike INNER JOIN, OUTER JOIN keeps the
rows that do not have a matching row on the other side and fills the
void with NULL. For example, “x LEFT JOIN y ON x.a = y.b” keeps
all rows from the left table x. For a left row that does not match any
right row on x.a = y.b, NULL is appended as the right row. Hence,
as shown in Table 3, the LEFT JOIN is the addition of two parts: (1)
for those matched rows, the same as INNER JOIN; (2) for those non-
matched rows, a product of three terms: “fl (𝑡𝑙 )” describes the left
rows being kept; “[IsNull(𝑡𝑟 )]” describes that NULL is appended as
the right row; “𝑛𝑜𝑡 (∑𝑡 ′𝑟 (· · ·))” describes the non-matching condition.
Figure 5 shows an example of translating a LEFT JOIN.

Representing constraints with FOL formulas. Each con-
straint is directly translated to a FOL formula according to Table 4.

2A tuple is NULL if all its attributes are NULL. A NULL attribute can be considered as
a NULL tuple with only one attribute.

Constraint Expression

RelEq(𝑟1, 𝑟2) ∀𝑡 .𝑟1(𝑡 ) = 𝑟2(𝑡 )
AttrsEq(𝑎1, 𝑎2) ∀𝑡 .𝑎1(𝑡 ) = 𝑎2(𝑡 )
PredEq(𝑝1, 𝑝2) ∀𝑡 .𝑝1(𝑡 ) = 𝑝2(𝑡 )
SubAttrs(𝑎1, 𝑎2) ∀𝑡 .𝑎1(𝑡 ) = 𝑎1(𝑎2(𝑡 ))

RefAttrs(𝑟1, 𝑎1, 𝑟2, 𝑎2)
∀𝑡1 .((𝑟1(𝑡1) > 0 ∧ ¬(IsNull(𝑎1(𝑡1))))
⇒ ∃𝑡2 .(𝑟2(𝑡2) > 0 ∧ ¬(IsNull(𝑎2(𝑡2)))

∧[𝑎1(𝑡1) = 𝑎2(𝑡2)]))

Unique(𝑟, 𝑎) (∀𝑡 .𝑟 (𝑡 ) ≤ 1) ∧ (∀𝑡, 𝑡 ′.𝑟 (𝑡 ) > 0 ∧ 𝑟 (𝑡 ′) > 0 ∧ 𝑎(𝑡 ) = 𝑎(𝑡 ′)
⇒ 𝑡 = 𝑡 ′)

NotNull(𝑟, 𝑎) ∀𝑡 .𝑟 (𝑡 ) > 0 ⇒ ¬(IsNull(𝑎(𝑡 )))

Table 4: Translation table from constraint to FOL formulas.

A set of constraints 𝐶 is translated to the conjunction of its mem-
bers:

ToFOL(𝐶) ≜
∧
𝑐∈𝐶

ToFOL(𝑐)

5.1.2 Verification of the Rule Correctness
After formalizing the query templates with U-expressions and

the constraints with FOL formulas, the rule verifier will check
a rule’s correctness using the SMT solver. To do so, we need to
formalize the correctness of the rule with FOL formulas.

Defining a rule’s correctness. To formalize correctness, we
need to first introduce the concept of interpretation, which specifies
the meaning of the relation, predicate and attribute list symbols.

Definition 1 (Interpretation). Given a query plan template 𝑞 rep-
resented as a U-expression, an interpretation is an assignment of
meaning to all symbols in 𝑞. We denote the concrete query plans
under the interpretation 𝐼 by qI . Similarly, the truth value of a
constraint set C under I is denoted by CI .

Next, we define the correctness of a rule. Intuitively, if a rule
is correct, its source and destination query templates should be
equivalent under the rule’s constraint set for any interpretations.

Definition 2 (Correctness of a rewrite rule). Given a rule with
two query plan templates <𝑞src, 𝑞dest> and a constraint set C, 𝑞src
and 𝑞dest are equivalent under C iff the following formula holds.

∀𝐼 .𝐶𝐼 ⇒ ∀𝑡 .𝑞𝐼src(𝑡 ) = 𝑞𝐼dest (𝑡 )

The formula “∀𝑡 .𝑞𝐼src(𝑡 ) = 𝑞𝐼dest (𝑡 )” is consistent with the definition
of bag equivalence [19]: two bags are equivalent iff. every tuple has
the same multiplicity on both sides. Moreover, the outer quantifier
“∀I” requires the proposition to hold under any interpretation.

To prove query equivalence, UDP [8] relies on converting two
U-expressions to their normalized forms and then establishing syn-
tactic isomorphism between them. However, such syntactic isomor-
phism requires establishing a one-to-one equivalent relationship
between the summations in the U-expressions, which can not be
guaranteed for queries with operators like OUTER JOIN. Figure 5
shows an example. Since the two normalized expressions ⟦𝑞src⟧(𝑡 )
and ⟦𝑞dest⟧(𝑡 ) have different numbers of summations, UDP cannot
establish the isomorphism needed for proving equivalence.

Logic-based decision procedure. Unlike UDP, WeTune uses
a logic-based decision procedure, which translates the correctness
definition (Definition 2) to a FOL formula and verifies it with the
SMT solver. There are two challenges in realizing this approach.
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Example SQL 𝑞7: SELECT T.* FROM T LEFT JOIN S ON T.k=S.k’
𝑞8: SELECT T.* FROM T
Integrity Constraint: S.k’ is unique key

Templates 𝑞src : Proj(LJoin𝑎0,𝑎1 (𝑟0, 𝑟1))
𝑞dest : Proj(𝑟0)

⟦𝑞src⟧(𝑡 ) B
∑︁
𝑥,𝑦

([𝑡 = 𝑥] × 𝑟0(𝑥 ) × 𝑟1(𝑦) × [𝑎0(𝑥 ) = 𝑎1(𝑦)] × NonNull(𝑎0(𝑥 )))

+
∑︁
𝑥,𝑦

([𝑡 = 𝑥] × 𝑟0(𝑥 ) × [IsNull(𝑦)]

× not(
∑︁
𝑦′

𝑟1(𝑦′) × [𝑎0(𝑥 ) = 𝑎1(𝑦′)] × NonNull(𝑎0(𝑥 ))))

⟦𝑞dest⟧(𝑡 ) B
∑︁
𝑥

([𝑡 = 𝑥] × 𝑟0(𝑥 ))

Figure 5: A pair of equivalent queries that cannot be proved

by UDP. The SQL query of 𝑞7 is collected from an open

sourced web application Discourse [25]. 𝑞src and 𝑞dest are the

templates. The symbols of 𝑟0, 𝑟1, 𝑎0 and 𝑎1 in the template

can represent the relations of T and S, and the attributes of

T.k and S.k’ in 𝑞7 accordingly. NonNull(·) is an abbreviation of

not([IsNull(·)]) for simplicity.

The first challenge is how to translate the U-expression 𝑞src(𝑡 ) =
𝑞dest (𝑡 ) to a FOL formula. WeTune performs the translation accord-
ing to Table 5. The table shows the basic U-expressions used by
the translation and their corresponding FOL formulas. These FOL
formulas ensure the sufficient condition, i.e. for any interpretation
that satisfies the FOL formula, then it also satisfies the U-expression.
For a compound U-expression, WeTune performs recursive trans-
lation. Starting from 𝑞src(𝑡 ) = 𝑞dest (𝑡 ), which defines the correctness
of a rewrite rule, WeTune individually translates 𝑞src(𝑡 ) and 𝑞dest (𝑡 )
into FOL formulas. When performing the translation, it will find the
matched form in Table 5 and replace it with the FOL formula3 For
example, Figure 6 shows the translated FOL formula when proving
the equivalence of two queries in Figure 2.

⟦𝑞src⟧(𝑡 ) = 𝑟0(𝑡 ) × [¬(IsNull(𝑎(𝑡 ))] × [∃𝑥.𝑟1(𝑥 ) × [𝑥 = 𝑎(𝑡 )] > 0]
× [∃𝑥.𝑟1(𝑥 ) × [𝑥 = 𝑎(𝑡 )] > 0]

⟦𝑞dest⟧(𝑡 ) = 𝑟0(𝑡 ) × [¬(IsNull(𝑎(𝑡 ))] × [∃𝑥.𝑟1(𝑥 ) × [𝑥 = 𝑎(𝑡 )] > 0]

Figure 6: The first-order logic formula of the example in

Figure 2. [·] denotes the transformation from bool to natural

number: [𝑏] B ite(𝑏, 1, 0).

When encoding the FOL formulas for the SMT solver, we repre-
sent the tuple as an object with uninterpreted sort in SMTLIB; The
relation, represented as ⟦𝑅⟧(𝑡 ) in U-expression, is encoded as an
uninterpreted function 𝑅(𝑡 ) : Tuple → N; the predicate is encoded
as an uninterpreted function 𝑃 (𝑡 ) : Tuple → Bool.

When translating U-expressions to FOL formulas, the most dif-
ficult part is the translation of summation (the last two rows in
Table 5). The unbounded summation domain makes it difficult to
represent the value of a summation in a FOL formula. We address
the problem based on the following insight. Since what matters is
the equivalence relation, it is unnecessary to explicitly represent the
3Occasionally, WeTune can not find any match in Table 5. For example, if both the
left and right child of a left join operator are an IN-subquery, then the U-expression
contains two sums (aka

∑
), which cannot be converted into FOL by Table 5. In this

case, the verifier cannot prove the rule’s correctness.

U-expression FOL formula

𝑓1(𝑡 ) = 𝑓2(𝑡 ) Tr(𝑓1(𝑡 )) = Tr(𝑓2(𝑡 ))
𝑓1(𝑡 ) + 𝑓2(𝑡 ) Tr(𝑓1(𝑡 )) + Tr(𝑓2(𝑡 ))
𝑓1(𝑡 ) × 𝑓2(𝑡 ) Tr(𝑓1(𝑡 )) × Tr(𝑓2(𝑡 ))
| |𝑓 (𝑡 ) | | ite(Tr(𝑓 (𝑡 )) > 0, 1, 0)
not(𝑓 (𝑡 )) ite(Tr(𝑓 (𝑡 )) > 0, 0, 1)

[𝑝] ite(Tr(𝑝), 1, 0)
| |∑𝑡 𝑓 (𝑡 ) | | ite(∃𝑡 .Tr(𝑓 (𝑡 )) > 0, 1, 0)
not(∑𝑡 𝑓 (𝑡 )) ite(∃𝑡 .Tr(𝑓 (𝑡 )) > 0, 0, 1)∑

𝑡 𝑓 (𝑡 ) = 0 ∀𝑡 .𝑓 (𝑡 ) = 0∑
𝑡 𝑓 (𝑡 ) = 1 ∃𝑡 .(𝑓 (𝑡 ) = 1 ∧ (∀𝑡 ′.𝑡 ′ ̸= 𝑡 ⇒ 𝑓 (𝑡 ′) = 0))∑

𝑡 𝑟 (𝑡 ) × 𝑓 (𝑡 )
= ∑

𝑡 𝑟 (𝑡 ) × 𝑔(𝑡 ) ∀𝑡 .𝑟 (𝑡 ) × Tr(𝑓 (𝑡 )) = 𝑟 (𝑡 ) × Tr(𝑔(𝑡 ))∑
𝑡 𝑟 (𝑡 ) × 𝑓 (𝑡 )

= ∑
𝑡,𝑠 𝑟 (𝑡 ) × 𝑔(𝑡 ) × ℎ(𝑡, 𝑠)

∀𝑡 . ((𝑟 (𝑡 ) × Tr(𝑓 (𝑡 )) ̸= 𝑟 (𝑡 ) × Tr(𝑔(𝑡 ))
∧𝑟 (𝑡 ) × Tr(𝑓 (𝑡 )) = 0 ∧ Tr(∑𝑠 ℎ(𝑡, 𝑠) = 0))

∨ (𝑟 (𝑡 ) × Tr(𝑓 (𝑡 )) = 𝑟 (𝑡 ) × Tr(𝑔(𝑡 ))
∧(𝑟 (𝑡 ) × Tr(𝑓 (𝑡 )) = 0 ∨ Tr(∑𝑠 ℎ(𝑡, 𝑠) = 1))))

Table 5: Translation table fromU-expression to FOL formulas.

Function Tr recursively translates sub-expressions according

to this table. The 𝑖𝑡𝑒(𝑝, 0, 1)means if 𝑝 is true, then the formula

returns 0. Otherwise, the formula returns 1.

value of a summation. Therefore, when proving ∑
𝑡 f (t) =

∑
𝑡 f ′(t),

we aim to find the sufficient condition P such that P ⇒ ∑
𝑡 f (t) =∑

𝑡 f ′(t). When P is proved to be true, then ∑
𝑡 f (t) =

∑
𝑡 f ′(t) must

also hold. Furthermore, if such P does not involve summation, we
can instead translate P into a FOL formula and prove it, effectively
eliminating the summation.

When P is not true, the verification fails and we consider the
rewrite rule to be incorrect, which can prevent an incorrect rule
from passing the verification. Specifically, we propose Theorem 5.1
and Theorem 5.2, corresponding to the last two rows in Table 5.

Theorem 5.1 eliminates the summation when the summed vari-
ables of two summations are aligned. It can be generalized to mul-
tiple summed variables. The proof can be found in our extended
version [49].

Theorem 5.1.(
∀𝐼∀𝑡 .𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 ) = 𝑟 𝐼 (𝑡 ) × 𝑔𝐼 (𝑡 )

)
⇔

(
∀𝐼 .

∑︁
𝑡

(
𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 )

)
=

∑︁
𝑡

(
𝑟 𝐼 (𝑡 ) × 𝑔𝐼 (𝑡 )

))
where 𝑟 is a function that denotes a relation, 𝑓 (𝑡 ) and𝑔(𝑡 ) are arbitrary
expressions. The superscript 𝐼 indicates the interpretation of symbols
under 𝐼 .

Theorem 5.2 generalizes Theorem 5.1 to scenarios where the
summed variables are not aligned. The proof can be found in our
extended version [49].

Theorem 5.2.(
∀𝐼∀𝑡 .

(
𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 ) ̸= 𝑟 𝐼 (𝑡 ) × 𝑔𝐼 (𝑡 ) ∧ 𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 ) = 0 ∧

∑︁
𝑠

ℎ𝐼 (𝑡, 𝑠) = 0
)

∨
(
𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 ) = 𝑟 𝐼 (𝑡 ) × 𝑔𝐼 (𝑡 ) ∧

(
𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 ) = 0 ∨

∑︁
𝑠

ℎ𝐼 (𝑡, 𝑠) = 1
)))

⇒
(
∀𝐼 .

∑︁
𝑡

(
𝑟 𝐼 (𝑡 ) × 𝑓 𝐼 (𝑡 )

)
=

∑︁
𝑡,𝑠

(
𝑟 𝐼 (𝑡 ) × 𝑔𝐼 (𝑡 ) × ℎ𝐼 (𝑡, 𝑠)

))
where ℎ(𝑡, 𝑠) is an arbitrary expression.

The second challenge is that universal quantifiers may make
the proof undecidable and cause the SMT solver to timeout. When
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proving a FOL formula is a tautology, the SMT solver needs to
exhaustively check all cases. For example, to prove 𝑞src(𝑡 ) is always
equivalent to 𝑞dest (𝑡 ), it needs to check all possible interpretations,
and under each interpretation it needs to further check every tuple 𝑡 .
In contrast, it is much easier proving a FOL formula is unsatisfiable
(UNSAT), as the SMT solver will stop as soon as it finds a contra-
diction implying UNSAT, which can avoid exhaustive reasoning.

Therefore, given a rewrite rule of <𝑞src, 𝑞dest ,𝐶>, WeTune veri-
fies its correctness by proving that ¬(𝐶 ⇒ ∀𝑡 .𝑞src(𝑡 ) = 𝑞dest (𝑡 )) is
UNSAT. As a result, instead of exhaustively checking all possible
interpretations and tuples, the SMT solver only needs to find a
contradiction that implies the formula above is UNSAT to prove
rule correctness. Nevertheless, timeouts still occur because the SMT
solver may fail to find the contradiction when the rule is either
incorrect or too complicated. To evaluate the effect of the timeout,
we test 232 rewrite rules from Calcite test suite which are already
known to be correct. WeTune can successfully prove 73 rules with-
out timeout. The others cannot be proved because they involve
the operators or features that WeTune does not support. We also
generate 100 incorrect rules by randomly selecting rules of Calcite
and mutating their constraints to make them incorrect. WeTune
encounters timeout for 96 of them, and only 4 rules are successfully
proved to be incorrect.

In summary, by converting the correctness reasoning to be the
UNSAT problem, WeTune is likely to perform the reasoning with-
out timeout when the rules are correct. Our empirical evidence
suggests that, for incorrect rules, WeTune tends to encounter time-
out instead of giving a counterexample. Thus, WeTune conserva-
tively considers those rules which cause timeout to be incorrect.
Currently, we only focus on finding the correct rules and leave
checking the incorrect ones without timeout as future work.

5.2 Integrating SPES

WeTune can also use an existing query equivalence checker like
SPES [50] to further improve rule discovery in scenarios when its
built-in verifier in Section 5 cannot prove a rule’s correctness.

Compared to the built-in verifier, SPES additionally supports
UNION and Aggregation operators. Therefore, we extend the rule
enumerator in Section 4.1 to enumerate plan templates containing
these two operators. The Aggregation operator is parameterized
with 4 symbols: an attribute list symbol 𝑎group for attributes used
in the GROUP BY clause; another attribute list symbol 𝑎agg for
attributes used in the aggregate function; an uninterpreted function
symbol 𝑓 for the aggregate function; a predicate symbol 𝑝 for the
predicate in HAVING clause. For example, the SQL query “SELECT
𝑎group , 𝑓 (𝑎agg) FROM ... GROUP BY 𝑎group HAVING 𝑝(𝑎group)” is
represented as a plan template Agg𝑎group,𝑎agg,𝑓 ,𝑝 (...). WeTune also
adds a new constraint AggrEq(𝑓1, 𝑓2) to indicate that two aggregate
functions are equivalent. For the UNION operator, WeTune does
not introduce any new symbols or constraints.

Given a rewrite rule <𝑞src, 𝑞dest ,𝐶>, WeTune needs to convert
it into inputs accepted by SPES. As SPES only takes the concrete
SQL queries and does not recognize the constraint set 𝐶 , WeTune
concretizes the 𝑞src and 𝑞dest according to the constraint 𝐶 with
the following three steps: First, we assign names to each symbol in

Features SPES Built-in

Aggregation ✓ ✗
UNION ✓ ✗
NULL ✓ ✓

OUTER JOIN ✓ ✓
Complex Predicate ✓ ✗

Predicate with NOT/XOR/OR ✓ ✗
Integrity Constraint ✗ ✓

Different # of input tables ✗ ✓

Table 6: Comparison of the capabilities of SPES and We-

Tune’s built-in verifier. ✓ indicates a feature is supported or

partially supported. Complex predicates refer to predicates

with arithmetic operations and CASE.

𝑞src and 𝑞dest according to those equivalence constraints including
RelEq, AttrsEq, PredEq and AggrEq. Specifically, it puts the equiv-
alent symbols into the same set, and all symbols in the same set
will share a randomly generated name. For example, in Figure 2,
𝑡2, 𝑡2′ and 𝑡4 could be assigned with the name “T2”. 𝑐0, 𝑐0′ and
𝑐1 could be assigned with the name 𝐶1. Second, for each attribute,
we find the relation it belongs to according to the SubAttrs con-
straints. If an attribute with the name 𝑐 belongs to a relation with
the name 𝑡 , then we change the attribute name from 𝑐 to 𝑡 .𝑐 . For the
example in Figure 2, the name of attribute list 𝑐0 will be changed to
𝑇 1.𝐶1. Third, we construct the schema definition according to the
attributes of relations. In Figure 2, T1’s schema has 1 column 𝐶1.

Table 6 compares different features supported by SPES and the
built-in verifier. Compared with SPES, the built-in verifier does not
support Aggregate and predicate with NOT/XOR/OR due to our
implementation restriction. It cannot supportUNION because the U-
expression of UNIONwith Projection, which is in the form “∑ +∑”,
cannot be converted into the FOL formula. Similarly, the other set
operators, such as INTERSECT and DIFFERENCE, also cannot be
supported by the built-in verifier. It is unnecessary for the built-
in verifier to support complex predicates, because its enumerated
query templates do not have concrete predicates. Compared with
the built-in verifier, SPES cannot handle SQL query with integrity
constraints. Furthermore, SPES cannot prove the equivalence of
two queries if they have different input tables, as these queries can
not be normalized to the same algebraic representation which is
necessary for the proof. For example, SPES cannot prove the equiv-
alence between “SELECT DISTINCT T.* FROM T” with “SELECT
DISTINCT T.* FROM T LEFT JOIN R On T.k = R.k”, which can be
proved by the built-in verifier. However, WeTune does not fully
utilize SPES because the current rule enumerator can not enumer-
ate plan templates having concrete aggregation functions, complex
predicates and predicates connected by XOR, OR and NOT. This
is considered as future work. A detailed comparison between the
built-in verifier and SPES can be found in Section 8.5 and Table 7.

6 Selecting Useful Rules

After generating the promising rules, WeTune empirically eval-
uates their usefulness. The basic idea is to collect queries from
real-world applications and evaluate which rules can rewrite those
queries into a more efficient form. Ideally, rewrites should be done
by the database optimizer using existing rewriting techniques. How-
ever, to work with non-open-source databases, WeTune performs
rewrites outside of the database.
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𝑞src : Proj𝑎0 (LJoin𝑎1,𝑎2 (Input𝑟0 , Input𝑟1 ))
𝐶 ={SubAttrs(𝑎0, 𝑎𝑟0 ), SubAttrs(𝑎1, 𝑎𝑟0 ),

SubAttrs(𝑎2, 𝑎𝑟1 ),Unique(𝑟1, 𝑎2), · · ·}

𝑞: SELECT T.a AS k FROM T LEFT JOIN S ON T.b=S.c

integrity constraint: S.c is unique key

Figure 7: An example of generated probing query 𝑞.

WeTune’s rewriting logic is based on simple greedy search.
Given a query, it iteratively applies the rule that results in the most
simplified target query (aka one with the fewest relational operators
of each type). There can be more than one such rule at each iterative
step. The iterative process terminates when no rewrites are possible.
WeTune then obtains the cost estimate of each rewritten query
from the existing database using the database’s cost estimator, e.g.,
MySQL supports retrieving estimated cost by EXPLAIN EXTENDED
command, MS SQL Server supports the same function by turning
on SHOW_PLAN_ALL option. WeTune measures the actual per-
formance of the most cost-efficient version of the query. To run the
query and its rewritten version, we populate the database tables
according to the schema and integrity constraints using randomly
generated data. If the performance is improved by rewriting, then
the corresponding rewrite rules are considered useful.

7 Additional Optimization

WeTune proposes two extra optimization strategies to reduce the
redundant rules and eliminate ORDER BY in SQL statements.

Reducing redundant rules.Multiple rules can be composed
to rewrite a query. For example, consider a query 𝑞 and three rules
𝑅1, 𝑅2, 𝑅3, we may get the same query 𝑝 after rewriting 𝑞 by (1) con-
secutively applying 𝑅1, 𝑅2 or (2) applying 𝑅3. Thus, 𝑅3 is redundant
and can be replaced by the composite of 𝑅1 and 𝑅2. During rule
discovery, it is desirable to reduce such redundant rules. Formally,
given a set of rules R and a rule 𝑅 ∈ R, 𝑅 is reducible under R if

∀𝑞.(Rewrite(R, 𝑞) = Rewrite(R − {𝑅}, 𝑞))

It is impossible to check all queries. Instead, WeTune generates a
concrete probing query 𝑞 and concrete constraints according to 𝑅’s
source plan template and constraints. First, WeTune concretizes
𝑞src to be 𝑞 according to the steps of concretizing 𝑞src for SPES
(Section 5.2). Second, WeTune adds concrete integrity constraints
for 𝑞 according to NotNull,Unique and RefAttrs constraints in the
rule. Figure 7 shows an example. 𝑞 must be the minimal pattern
that 𝑅 is applicable to. i.e., any query that 𝑅 is applicable to must
contain the pattern 𝑞. Thus, to decide the reducibility, it is sufficient
to check whether the following condition is true: Rewrite(R, 𝑞) =
Rewrite(R − {𝑅}, 𝑞)

Eliminating ORDER BY. Although WeTune does not support
ORDER BY, WeTune can remove it from the query when it does
not affect the query semantic. This is based on the insight that in
SQL, an “ORDER BY” operator in the subquery can be useless when
the outer query does not perform computations that can be affected
by the order of tuples in the subquery result (e.g., aggregates a
constant value from the subquery). In such cases, WeTune will
directly eliminate ORDER BY in the statements.

8 Evaluation

The evaluation aims to answer the following questions:
Q1. How many new useful rules can WeTune discover?
Q2. How many new queries can WeTune optimize over existing

systems for real-world applications?
Q3. How does WeTune’s built-in verifier compare with SPES?

8.1 Experimental Setup

Implementation.We have built WeTune from scratch, which has
about 40k lines of Java code. It takes the max plan template size
as the parameter and outputs a set of non-reducible and promis-
ing rules. WeTune can also automatically check the usefulness
of these rules by cooperating with existing database systems, in-
cluding MySQL, PostgreSQL and MS SQL Server. Thus, besides
the rule enumerator and verifier, it also contains a SQL parser, a
query plan builder and a benchmark framework that evaluates SQL
performance. Specifically, the built-in verifier is based on the SMT
solver Z3 [12].

Generating Rules. WeTune enumerates all query plan tem-
plates up to size 4, yielding 3113 distinct templates. WeTune finds
1106 promising and non-reducible rules in 36 hours (on 120 CPU
cores in total), among which 32 hours were spent in verification.
Each potential rule takes about 50 ms on average to verify. For
each rule, WeTune invokes the SMT solver 383 times on average
to search for the most relaxed constraint set.

Workload.We use two workloads for the evaluation: one is a
real-world workload, another is the Apache Calcite test suite [5].
For the real-world workload, we collect SQL queries from 20 open-
source web applications on GitHub with the most stars for evalua-
tion (the full list is included in our extended version [49]). These ap-
plications come from various genres, such as e-commerce, content
management, discussion forum and social network. The number
of contributors varies from 1 (1,902 stars) to 2,007 (22,203 stars).
We collected 8,518 unique queries by running unit tests bundled
with the source code. The Calcite test suite comprises 232 pairs of
queries (464 individual queries) that are known equivalent, and all
these queries can be rewritten by the rules in Calcite.

Evaluating Rules. When selecting useful rules, all rules are
evaluated based on MS SQL Server 2019. The queries used to evalu-
ate rules include both workloads described above. When executing
queries on the database to evaluate latency, we populate four dif-
ferent tables. Two tables have 1K rows, while the other two have
100K rows. For every two tables with the same number of rows,
one of them is populated with random data generated according
to the uniform distribution, while the other one is populated with
random data generated according to the Zipfian distribution with a
skewed parameter of 1.25.

Testbed. All experiments are run on a server with a 20-core
(2 sockets) Intel E5-2650 v3 CPU, 126 GB DRAM, and 1 TB SSD.
The end-to-end latency of every query is evaluated on MS SQL
Server 2019. We implement a dedicated client program that issues
database queries and resides on the same machine as the database
to eliminate network communication overhead. For a given query,
the client randomizes the parameters in the query with extra care
to avoid that every execution always directly fetches results from
the database cache and to prevent the output result set is always
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empty. Each query is repeatedly executed 200 times in a closed loop
(the first 100 times serve as warmup and are not counted into the
result). When comparing WeTune with the rewriter in existing
databases, we use the rewriter in Microsoft SQL Server 2019.

8.2 New Rewrite Rules

Table 7 shows the rules found by WeTune. There are 35 distinct
rules which are useful for the evaluated queries. Among these rules,
9 rules are missing in MS SQL Server, 22 are missing in Calcite,
and 5 are missing in both systems. 34 rules are discovered with
the 8518 queries collected from the web application; only rule 35 is
discovered with the queries in the Calcite test suite.

For the used verifier, 15 rules can be proved by both the built-in
verifier and SPES. 16 rules can only be proved by the built-in verifier.
SPES fails to prove these rules because 10 cases involve integrity
constraints, 4 have mismatched input tables between the 𝑞src and
𝑞dest , and 2 cases (Rule 19 & 21) are related to SPES implementation.
Taking rule 19 as an example, SPES fails to prove its correctness
because we replace the predicate symbols in the query templates
with the user-defined function. However, SPES does not consider
that two user-defined functions are equivalent even if they have the
same function name 4. Compared with the built-in verifier, 4 rules
can only be proved by SPES, as these rules have certain features
only supported by SPES.

8.3 Queries Optimized by WeTune

We try to use generated rules of WeTune to rewrite both the queries
studied in Section 2.2 and collected from real-world applications to
see how many of them can be optimized by our discovered rules
but cannot be optimized by existing systems.

The number of queries rewritten. For the 50 issues we have
studied, WeTune can optimize 76% (38) of them, while MS SQL
Server and Calcite can only optimize 46% (23) and 8%(4) of them.
WeTune is unable to rewrite the remaining 12 queries due to two
reasons. First, 9 of them need to rewrite the predicate expression or
add a new predicate that does not equal to predicates in the original
query (e.g., rewrite the predicate from “id IS NULL” to “ project_id
IS NULL” [1]). It requires finer-grained modeling and reasoning of
the predicate expressions. The rest 3 of the queries need explicitly
model the semantics of operators that WeTune currently does not
support, including Aggregate and GROUP BY.

For 8518 queries collected from 20 real-world applications, We-
Tune can successfully rewrite 674 queries, amongwhich 247 queries
SQL Server fails to optimize (the other 427 queries can be effec-
tively optimized). We manually check the remaining 7844 queries
to investigate why WeTune cannot rewrite them. The main rea-
son is that most queries (4251) only consist of SELECT-clause and
WHERE-clause, without JOIN, subquery, Aggregate or any other
clause. Optimizing such queries usually requires transformation at
the physical execution level (e.g., index choice), which is beyond
the scope of WeTune. The result shows WeTune can optimize
more queries over existing databases.

We try to rewrite all 464 queries in the Calcite test suite. We-
Tune can rewrite 120 queries, among which 26 cannot be effectively

4Ahypothesis of such design is SPESmay aim to support some functions likeRANDOM,
which is not considered by WeTune.

optimized by MS SQL Server. For 23 queries of them, the rewrit-
ing performed by WeTune can achieve a 23.8% - 95.2% latency
reduction than the rewriting of Calcite itself.

Latency reduction. To show the effectiveness of the optimiza-
tions found by WeTune, we compare the latency of the rewritten
query with the original one on the same database for each of 273
queries that cannot be optimized by MS SQL Server (247 from
applications plus 26 from Calcite test suite).

To knowwhether these rewrites are specific to certain workloads,
we synthesized four workloads with varying table sizes (number of
rows in the table) and data distribution, as summarized below:

# of rows=10K # of rows=1M
uniform dist. workload A workload B

zipfian dist. (𝜃 = 1.5) workload C workload D

We implement a data generator inserting randomly generated rows
into tables, which carefully maintains integrity constraints.

For workload A,WeTune can optimize at least 50% of the queries
with more than 10% latency reduction and 17%, 18%, 30% reduction
for workload B, C and D, respectively. WeTune can also optimize
13%-21% queries with at least a 90% latency reduction for all four
workloads. This demonstrates that the rewrites are not specific to
a certain table size or data distribution.

8.4 Case Study

Take the second query in Table 1 as an example of finding sequences
of useful rules to optimize a query. First, WeTune iteratively gen-
erates new queries via rewrite rules, which takes 1.5s. Second, it
consumes 5.3s to use the cost estimator in MS SQL Server to eval-
uate generated new queries. Then, we evaluate the end-to-end
latency of every generated query by issuing it to the database. This
step takes 12s, which indicates that we can find the sequence of
rules that can produce the query with better performance within a
reasonable amount of time.

Figure 8 shows each step of the best sequence of rewrite rules for
the example above. First, the IN-selection is transformed to INNER
JOIN in (2). Then, the predicate below the INNER JOIN is pulled up
above it in (3). Usually, pushing down predicate below a JOIN is a
standard optimization technique that can eagerly reduce the num-
ber of rows. However, in this case, pulling the predicate up enables
new optimization opportunities that lead to a more efficient query.
Next, the column “m.commit_id” used in the predicate is replaced
by “n.commit_id” in (4). This replacement is guaranteed correct
because the ON-condition “n.id=m.id” and the uniqueness property
of primary key collectively imply that “m.commit_id=n.commit_id”
holds for each row in the result set of the JOIN. Last, the table
source t1 is eliminated by applying the JOIN-elimination rule.

Some rules that rewrite the source query plan to a similar plan
are still useful, such as rule 17 and rule 18. For example, the query
“Select T.y From R Inner Join T On R.x=T.y” will become “Select R.x
From R Inner Join T On R.x=T.y” after applying rule 17. This rewrite
allows WeTune to further apply rule 7 to eliminate the join when
rule 7’s constraints are met. Similarly, Rule 18 is useful because it
might enable the subsequent application of rule 8.

8.5 Built-in Verifier vs. SPES

SPES is the state-of-the-art SQL equivalence verifier [50]. We try
to compare the built-in verifier with SPES via two workloads: one
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No. Source Plan Template Destination Plan Template Extra Constraints Verifier Calcite MS

1 Selp,r.a0 (Projr.a1 (r)) Projr.a1 (Selp,r.a0 (r)) SubAttrs(𝑎1, 𝑎0) B Y Y
2 Dedup(Projr.a(r)) Projr.a(r) Unique(r, a) W N Y
3 Selp,r.a(Selp,r.a(r)) Selp,r.a(r) B Y Y
4 InSubr0 .a0 (InSubr0 .a0 (r0, r1), r1) InSubr0 .a0 (r0, r1) W N N
5 Projr.a0 (Selp,r.a1 (Projr.a2 (r))) Projr.a0 (Selp,r.a1 (r)) SubAttrs(a0, a2),SubAttrs(a1, a2) B Y Y
6 LJoinr0 .a0,r1 .a1 (r0, r1) IJoinr0 .a0,r1 .a1 (r0, r1) RefAttrs(r0, a0, r1, a1),NotNull(r0, a0) W N Y
7 Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1)) Projr0 .a2 (r0) RefAttrs(r0, a0, r1, a1),NotNull(r0, a0),Unique(r1, a1) W N Y
8 Projr0 .a2 (Selp,r0 .a3 (IJoinr0 .a0,r1 .a1 (r0, r1))) Projr0 .a2 (Selp,r0 .a3 (r0)) RefAttrs(r0, a0, r1, a1),NotNull(r0, a0),Unique(r1, a1) W N C
9 Dedup(Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1))) Dedup(Projr0 .a2 (r0)) RefAttrs(r0, a0, r1, a1),NotNull(r0, a0) W N Y
10 Dedup(Projr0 .a2 (Selp,r0 .a3 (IJoinr0 .a0,r1 .a1 (r0, r1)))) Dedup(Projr0 .a2 (Selp,r0 .a3 (r0))) RefAttrs(r0, a0, r1, a1),NotNull(t0, a0) W N C
11 Projr0 .a2 (LJoinr0 .a0,r1 .a1 (r0, r1)) Projr0 .a2 (a0) Unique(r1, a1) W N Y
12 Projr0 .a3 (Selp,r0 .a2 (LJoinr0 .a0,r1 .a1 (r0, r1))) Projr0 .a3 (Selp,r0 .a2 (r0)) Unique(r1, a1) W N Y
13 Dedup(Projr0 .a2 (LJoinr0 .a0,t1 .r2 (r0, r1))) Dedup(Projr0 .a2 (a0)) W N Y
14 Dedup(Projr0 .a3 (Selp,r0 .a2 (LJoinr0 .a0,r1 .a1 (r0, r1)))) Dedup(Projr0 .a3 (Selp,r0 .a2 (r0))) W N Y
15 InSubr.a(r, Projr′.a(r′)) r NotNull(r, a) W Y N
16 Projr.a(IJoinr.a,r′.a(r, r′) Projr.a(r) NotNull(r, a),Unique(r, a) W N N
17 Projr1 .a1 (IJoinr0 .a0,r1 .a1 (r0, r1)) Projr0 .a0 (IJoinr0 .a0,r1 .a1 (r0, r1)) B N N
18 Projr1 .a1 (Selp,r0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1))) Projr0 .a0 (Selp,r0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1))) B N N
19 Selp,r1 .a1 (IJoinr0 .a0,r1 .a1 (r0, r1)) Selp,r0 .a0 (IJoinr0 .a0,r1 .a1 (r0, r1)) W N Y
20 IJoinr1 .a1,r2 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1), r2) IJoinr0 .a0,r2 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1), r2) B N Y
21 LJoinr1 .a1,r2 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1), r2) LJoinr0 .a0,r2 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1), r2) W N Y
22 Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1)) Projr0 .a2 (IJoinr1 .a1,r0 .a0 (r1, r0)) B Y Y
23 IJoinr0 .a0,r1 .a1 (r0, IJoinr1 .a2,r2 .a3 (r1, r2)) IJoinr1 .a2,r2 .a3 (IJoinr0 .a0,r1 .a1 (r0, r1), r2) B Y Y
24 Projr0 .a2 (InSubr0 .a0 (r0, Projr1 .a1 (r1))) Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1)) Unique(r1, a1) B Y Y
25 Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0,Dedup(Projr1 .a1 (r1)))) Projr0 .a2 (InSubr0 .a0 (r0, Projr1 .a1 (r1))) B N Y
26 Dedup(Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0,Dedup(r1)))) Dedup(Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1))) W N Y
27 IJoinr0 .a0,r1 .a1 (r0, Selp,r1 .a2 (r1)) Selp,r1 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1)) B Y Y
28 Selp,r1 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1)) IJoinr0 .a0,r1 .a1 (r0, Selp,r1 .a2 (r1)) B Y Y
29 Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, Projr1 .a1 (r1)))) Projr0 .a2 (IJoinr0 .a0,r1 .a1 (r0, r1))) B N Y
30 Selp,r.a0 (IJoinr.a1,r′.a1 (r, r′)) Selp,r′.a0 (IJoinr.a1,r′.a1 (r, r′)) Unique(r, a1) B N N
31 Projr0 .a0 (LJoinr0 .a1,r1 .a2 (Projr0 .a3 (r0), r1)) Projr0 .a0 (LJoinr0 .a1,r1 .a2 (r0, r1)) B Y Y
32 Projr0 .a0 (LJoinr0 .a1,r1 .a2 (r0, Projr1 .a3 (r1))) Projr0 .a0 (LJoinr0 .a1,r1 .a2 (r0, r1)) S Y Y
33 Aggr.a0,f,r.a1,p0 (Filterp1,a2 (Projr.a3 (r))) Aggr.a0,f,r.a1,p0 (Filterp1,a2 (r)) SubAttrs(a0, a3), SubAttrs(a1, a3), SubAttrs(a2, a3) S Y Y
34 Aggr0 .a0,f,r0 .a1,p(IJoinr0 .a2,r1 .a3 (Projr.a4 (r0), r1)) Aggr0 .a0,f,r0 .a1,p(IJoinr0 .a2,r1 .a3 (r0, r1)) SubAttrs(a0, a4), SubAttrs(a1, a4), SubAttrs(a2, a4) S N Y
35 Aggr.a0,f,r.a1,p0 (Filterp0,r.a0 (r)) Aggr.a0,f,r.a1,p0 (r) S Y N

Table 7: Useful rewrite rules found by WeTune. The Verifier column indicates which verifier can prove the rule.𝑊 means

the built-in verifier, 𝑆 means SPES, and 𝐵 means both. The Calcite and MS columns indicate whether Calcite and MS SQL

Server support these rules. The tree structure of the plan template is flattened by pre-order traversal. Each ri represents an
input table. Each ai represents an attribute list. Each p represents a predicate. IJoin is the abbreviation for InnerJoin, and LJoin
is for LeftJoin. Multiple occurrences of the same symbol (i.e., ri, ai, p) depict the equivalence constraint. Each ri .aj stands for a
constraint SubAttrs(aj, ari ). Other types of constraints are listed in the column Extra Constraints. For rule 15 and 16, r and r′
denote two distinct occurrences of the same relation (e.g., “SELECT r.* FROM tbl AS r INNER JOIN tbl AS r’ ON r.k=r’.k”). For
rule 8 and 10, SQL Server can conditionally (C) eliminate the JOIN only if the attributes a3 is different from a0.

is the 861 rules generated using the built-in verifier. Another is the
232 pairs of equivalent SQL in Calcite test suite.

Rules generated by the built-in verifier. With the built-in
verifier, WeTune is able to enumerate 861 promising and non-
reducible rules. Among these rules, SPES successfully verifies 41
rules. Among the 820 that are not verified, 725 are due to that SPES’s
current implementation does not support integrity constraints and
95 are due to mismatched numbers of input tables on both sides.

Calcite Test Suite. The Calcite test suite comprises 232 pairs
of queries. Each pair includes two equivalent SQL. SPES can suc-
cessfully verify the equivalence of 95 query pairs of them, while
the built-in verifier can prove the equivalence of 73 query pairs.
Specifically, 55 pairs can be proved by both the built-in verifier and
SPES. The number of pairs that the built-in verifier can prove is
less than that can be proved by SPES because most rewrite rules in
the test suite involve unsupported features of the built-in verifier,
such as complex predicate. However, these features are supported
by SPES.

9 Related Work

Query equivalence verification. Recently, researchers have pro-
posed several systems [8–10, 51] to prove the equivalence of SQL
queries formally. There are two approaches: some are based on
proof assistants [8–10] while others are based on SMT [50, 51]. For
the former approach, the state-of-the-art checker [8] uses an alge-
braic approach to verify the correctness of rules. Although their
algebraic approach can model complex query structures based on
the bag semantics, it lacks support for three-value-logic reason-
ing. For the SMT-based approach, recent work [50, 51] proposed
symbolic representation of the query and leveraged the SMT solver
to efficiently prove the equivalence of queries. But these systems
lack the support of integrity constraints. WeTune overcomes some
of their disadvantages by extending the algebraic approach with
three-value-logic reasoning and supporting features such as in-
tegrity constraints.

Superoptimization. As a compiler optimization technique, su-
peroptimization [2, 34] aims to find the optimal code sequence of a
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Figure 8: An example sequence of rules discovered by WeTune to optimize a SQL query of a real-world query. The notes.id
is the primary key of table notes. The cid in the figure is the abbreviation of commit_id. Each colored arrow in the figure

represents a rule with the rewrite rule index above the arrow. The sub-plan in the same color is the source and destination plan

template of the rule. The corresponding constraints are omitted.

set of instructions, which inspires WeTune. TASO [23] leverages
superoptimization to find rewrite rules to rewrite deep neural net-
works (DNN). However, these works target different scenarios from
query rewrite. WeTune needs to adopt different enumeration and
verification methods. For example, in terms of enumeration, We-
Tune considers the relations of symbols (constraint) in SQL rewrite
rules and enumerates all possible constraints. DNN operators have
simpler parameters, and TASO only considers the relation between
input/output operators. Ruler [38] has proposed a framework that
abstracts the "search + verification" methods based on equality
saturation to reduce candidate generation and selection cost. It is
a general approach instead of specifically targeting SQL queries.
WeTune could potentially use this framework to further improve
the speed of discovery.

Query optimization. There has been a long line of work for
query optimization, roughly divided into two categories depending
on the search strategy of query plans. One is through a strati-
fied approach [29, 42, 45], which first rewrites the logical query
plan using transformation rules and then performs a cost-based
search to map the logical plan to a physical plan. The other is
through a unified approach [3, 14, 16, 18, 37], which unifies the
logical to logical and logical to physical transformation into one
stage. Recently, there has been a trend in adopting deep learning to
query optimization [24, 26, 30–32, 47]. Given a set of rewrite rules,
LearnedRewrite [52] is able to find the optimal rewrite order by
using Monte Carlo Tree with learned cost models. However, these
methods require manually written transformation rules and are
orthogonal with the goal of WeTune.

10 Limitations

WeTune has the following two major limitations.
Incompleteness. One limitation is the incompleteness of the

built-in verifier. First, due to the unbounded nature of the ∑ op-
erator, U-expression fundamentally exceeds the expressiveness of
FOL. Currently, only cases listed in table 5 can be translated to FOL
and automatically verified by the SMT solver. How to automatically
transform any U-expression into FOL formulas is left as future
work. Second, the translated formula does not always fall into a

decidable fragment of the SMT solver; thus may lead to timeout
and consequently miss useful rules.

Unsupported SQL features.Another limitation is that the built-
in verifier currently only supports rules containing operators listed
in table 2. Furthermore,WeTune does not support recursive queries.
As described in Section 5.2, some features are unsupported, such as
UNION. Some features are partially supported, such as NULL. As
described in Section 5.1.1, WeTune currently only considers the
impact of NULL on operators in Table 3. Supporting more features
is left as future work. Although some SQL features are unsupported,
the soundness of WeTune holds for non-recursive queries. In other
words, rewriting a query plan with rules obtained by WeTune can
guarantee equivalent semantics. This is because, for every non-
recursive query, even if it contains unsupported features, replacing
its sub-plan without such features with another equivalent plan
will not alter its original semantics.

11 Conclusion

This paper presents WeTune, which can automatically discover
the rewrite rules for SQL queries. It enumerates all valid logical
query plans up to a certain size to discover equivalent plans based
on a new SMT-based verifier. We apply the rules discovered by
WeTune on SQL queries collected from the 20 most popular open-
source web applications on GitHub.WeTune successfully optimizes
247 queries that existing databases cannot optimize, resulting in
substantial performance improvements.
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