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Modern web applications use databases to store their data. When processing user requests, these applications
retrieve and store data in the database server, which incurs network round trips. These round trips signifi-
cantly increase the application’s latency. Previous approaches have attempted to reduce these round trips by
prefetching query results or batching database accesses. However, neither method can efficiently reduce the
latency when some queries depend on previous queries’ results. In real-world applications, nearly 50% of the
queries depend on the result of other queries.

This paper presents WeBridge, the first system capable of synthesizing stored procedures for large-scale
real-world web applications. First, WeBridge employs concolic execution technique to analyze the applications
and generate stored procedures for hot program paths. Then, it seamlessly integrates the stored procedures
into the application by extending the database access library. Finally, it improves the efficiency of the stored
procedures with speculative execution. Evaluation using real-world web applications and workloads show
that WeBridge achieves up to 79.8% median latency reduction and up to 2x peak throughput.
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1 Introduction

Latency is critical to web applications. Studies have shown that a 500 ms increase in latency can
lead to a 20% decrease in overall traffic [75], and nearly half of the users will abandon a website if
the page load time exceeds 3 seconds [106]. One primary reason behind the high latency is frequent
communication between the web server and the database server [39, 40, 107-109]. As most web
applications store their data in a database server, each data access incurs a network round trip. In a
real-world e-commerce web application [7], when a user adds a product to the shopping cart, the
application might necessitate over a hundred network round trips to retrieve and store data in the
database server.

Two lines of research have been proposed to mitigate the database communication latency. The
first is prefetching [36, 78, 90, 92], which involves issuing queries to the database as soon as the
query parameters are available. Doing so asynchronously allows for the overlapping of database
communication and application computation to hide latency. The second is batching [39, 40],
which defers query execution until the query results become essential. This deferred execution
technique enables the accumulation of multiple queries on the application side, thereby creating
opportunities for batching. By issuing these deferred queries together, the number of network round
trips and overall application latency can be reduced. However, these approaches have a fundamental
limitation when it comes to optimizing the latency associated with queries that have dependencies
on other queries. The limitation occurs because the computation of query dependencies solely
takes place on the application side, necessitating extra round trips to retrieve the required data for
computation.

This paper describes a new approach that reduces the number of network round trips incurred
by issuing SQL queries even when they have dependencies. The approach leverages stored proce-
dures [6] to execute dependent queries on the database side, eliminating the need for communication
with the application. Our goal is to automatically synthesize stored procedures that benefit web
applications. To achieve this, we must analyze web application APIs to understand what and how
SQL statements are interactively issued. Prior works have applied static analysis methods on simple
example web applications [37, 38, 92]. However, the direct application of static analysis to present-
day web applications poses challenges. Many applications heavily rely on third-party libraries like
object-relational mapping (ORM) layers and web frameworks. These libraries extensively employ
dynamic language features, such as reflection in Java, to avoid code duplication. The utilization of
dynamic features makes it exceedingly difficult to statically analyze applications whose behaviors
are determined at run time [74]. Moreover, the widespread usage of these libraries often results in
large-scale codebases in today’s web applications, further complicating the existing static analysis
approach [24].

We built WeBridge, the first system capable of synthesizing stored procedures for large-scale
real-world web applications. The system adopts a dynamic program analysis technique— concolic
execution [23, 32, 65, 87, 97, 98]—to analyze the database accesses. Using concolic execution, we re-
executed hot program paths, guided by the observation that most requests in real-world workloads
exercise only a few paths [70]. The re-execution allows us to collect SQL statements issued to the
database and extract their control and data dependency information. With the extracted information,
WeBridge constructs the stored procedures for hot program paths accordingly. Then, WeBridge
seamlessly integrates the synthesized stored procedures into the application by intercepting all
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Original code fragment
@RequestMapping("AddCart/{uid}/{pid}")
Response addCart(int uid, int pid) {

1
2
3 /I Get the user, cart, product tuples from the database

4 User user = em.find(User.class, uid); [Q1]
5: Cart cart = em.find(Cart.class, user.getCartId()); [Q2]
6:  Product product = em.find(Product.class, pid); [Q3]
7 /I Check if the product is available

8 if (product.getStock() > @) {

9: CartItem item = new CartItem(pid);

10:  cart.addItem(item);

11:  // Add item to the database tables

12:  em.save(Item.class, item); [Q4,Q5]
13:  product.stock = product.stock - 1;

14:  // Update product in the database

15:  em.save(Product.class, product); [Q6]
16: return new Response("Succeeded");

17: } else {

18:  // Log the “No stock” error to the LOG table.

19:  em.save(Log.class, new Log(pid, "NO_STOCK")); [Q7]

20:  return new Response("No stock"); }}
Fig. 1. A simplified application code fragment abridged from Broadleaf’s addCart API [7]. This API adds a
product to a user’s shopping cart. When the product is available (line 8), a single ORM invocation (line 12)
issues two INSERTs to the ITEM table (Q4 and Q5) to add the product to the cart.
SQL statements and invoking stored procedures when appropriate. This integration method is
transparent to the application, as it does not necessitate any changes to the application’s source code.
Additionally, WeBridge employs speculative execution to enhance the efficiency of the synthesized
stored procedures. Finally, if the analyzed execution paths were encountered again, WeBridge
invokes the stored procedures for better performance. Conversely, if the execution paths are never
met before, WeBridge would revert to issuing the original application’s interactive SQL statements.
We evaluated WeBridge with six real-world applications from GitHub, covering four different cat-
egories: e-commerce, blogging, forum, and configuration management. WeBridge has successfully
synthesized stored procedures that consolidate interactive SQL statements for all applications. The
results showed that, by serving hot paths with synthesized stored procedures, WeBridge achieves
up to 79.8% median request latency reduction and 2X increase in peak throughput. To summarize,
this paper makes the following contributions.
o Recognition of the significance and challenges of synthesizing stored procedures for real-world
web applications.
e Design and implementation of WeBridge, the first system for synthesizing stored procedures for
real-world web applications.
e Comprehensive evaluation using real-world web applications and workloads that validates the
effectiveness of WeBridge.

2 Motivation and Challenges
2.1 Latency in Web Applications

Today, application servers and database systems are typically hosted on separate nodes, possibly in
different data centers [35, 103]. Consequently, each database access incurs a round trip between the
web server and the database server. Figure 1 shows a simplified code fragment from Broadleaf’s
addCart API [7] and Figure 2 shows the SQL statements issued by the ORM framework. There are
either four or six network round trips, depending on the branching decision at line 8. We evaluated
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Derived stored procedure
1: CREATE PROCEDURE sp(uid_in INT, pid_in INT) BEGIN

2:  SELECT * INTO @userId_user, @cartId_user, ... [Q1]
FROM USER WHERE id = @uid_in
3: SELECT * INTO @cartId_cart, ... FROM CART [Q2]

JOIN CART_ITEMS JOIN ITEM ON ..
WHERE id = @cartId_user

4: SELECT * INTO @productId, @stock, ... [Q3]
FROM PRODUCT WHERE id = @pid_in

IF @stock > @ THEN

INSERT INTO ITEM(itemId, productId) VALUES (...) [Q4]

INSERT INTO CART_ITEMS(cartId, itemId) VALUES (...) [QS5]

UPDATE PRODUCT SET stock=stock-1 WHERE id=@productId [Q6]

RETURN true

ELSE

INSERT INTO LOG(@productId, @eventName) [Q7]
VALUES (@productId, "NO_STOCK")

12:  RETURN false

13: END IF END

—2YP N Y

lrlicd

Fig. 2. The derived stored procedure for Figure 1.
this example with separately deployed client, web server, and database server (within the same
data center), simulating a realistic workload derived from [67]. We found that 56% of the request
processing time is spent on network communication between the web server and database.

Existing Solutions and Limitation. Two approaches have been proposed to mitigate this
latency. The first is prefetching [36, 78, 90, 92], which eagerly fetches query results as soon as a
query’s parameters are ready. This approach parallels computation and network to reduce the
latency impact caused by round trips. In Figure 1, the parameters of Q; (line 4) and Qs (line 6)
are ready at the beginning of the method. Thus, the application could prefetch these two queries
asynchronously, in parallel with subsequent computations. The second approach is batching [39, 40],
which defers the execution of SQL statements until the query result is required externally. In Figure 1,
the results of Q; (line 5) and Qs (line 6) are not needed until line 8, so they can be lazily batched
into one round trip at line 8.

However, both approaches fail to minimize the latency of queries if one control- or data-depends
on the other. Unfortunately, such dependencies are common in web applications. In Figure 1, Qs
(line 15) control-depends on Qs (line 6) since Qs’s result determines whether Qg should be executed
(line 8). Q; (line 5) data-depends on Q; (line 4) since Q;’s parameter is derived from Q;’s result. It is
not feasible to prefetch SQL queries that depend on other queries in one round trip. This is because
the execution decision or the parameter selection of the dependent queries can only be made after
the execution of the preceding queries. For Q, in the example, only after Q; gets executed can Q,
know what parameters it should use. As a result, Q, cannot get prefetched at the beginning of the
APL Similarly, batching is not viable when there are dependencies among SQL queries. To see the
impact of queries with dependencies, we analyzed the queries in Broadleaf and found that 46% of
the SQL statements have control or data dependency on other queries.

Opportunities: Stored Procedures. Stored procedures are fully fledged database programs
capable of expressing both data and control dependencies among SQL statements, providing
opportunities to execute business logics without communication with the application. To showcase
the effectiveness of stored procedures, Figure 2 shows a stored procedure that encapsulates all data
accesses in Figure 1. The necessary round trips are reduced from six (four) to one, as shown in
Figure 3. As a result, the end-to-end latency decreased by 59%, a significant improvement over
existing solutions. Meanwhile, stored procedures can avoid repeatedly parsing and planning the
same set of parameterized SQL statements. As a result, more processing power can be spent on
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Original Application
Application Database w/ Stored Procedure

_em/find(User...) | fmd User..) - - RT1 RT1 -
: Ql P> «—:
Result: rs1 . < > . al

buffer.next(): rs1

Program Line

: : sp's results :

em. f|nd(Cart ) Q2 RT 2 are buffered Q2
Result: rs2 |- < . |buffer.next(): rs2 | :

em.find(Product... z RT3 Q3
Result rs3 < - | buffer.next(): rs3 | -

No further . .

@ _em.save(ltem...) (Item... Q4 RT 4 round-trips Q4
Result:rs4 |: <€ are needed . buffer.next(): rs4 | :

@ emflnd(User) o5 : RT5 : o5 :
Result: rs5 <« buffer.next(): rs5
‘ _em.save(Log..) | ® : RT6 @
<« * |buffer.next(): rs6 | :

Fig. 3. Round trip (RT) comparison between the original application and one using a single stored procedure.
executing core business logics, which improves application throughput. For the above example,
using stored procedure achieves 1.38x higher throughput.

Despite these benefits, stored procedures are still rarely used in web applications. To gain
insights into the practical usage of stored procedures, we conducted an investigation on the 50
most popular open-source web applications on GitHub. By manual examination of source code
and documentation, we found that none of them uses stored procedures. A recent report [88] also
confirms this finding, showing that more than half of the production database workloads seldom,
if ever, use stored procedures. One primary reason might be that stored procedure is notorious
for the difficulties in development [57]. On the one hand, developers have to both manually write
declarative data access and modification statements on their own, which is a challenging task
that directly leads to the prevalence of ORM frameworks today, but also write control logics in a
“low-level” and “arcane” procedural language [38].

Therefore, we ask: Can we automatically synthesize stored procedures from large-scale real-world
web applications today?

2.2 Challenges

It is non-trivial to automatically synthesize stored procedures from real-world web applications.
To the best of our knowledge, no existing work can achieve this goal. An intuitive way is using
static program analysis techniques to obtain dependencies among database accesses, and construct
mapping rules between ORM interfaces with SQL statements. Then, we could synthesize stored
procedures with the dependency information in a rule-based manner.

Existing works [37, 38, 92] have already applied static analysis to web application source code.
They use data flow analysis [22] and program dependence graph analysis [51] techniques to extract
the control and data dependencies among database accesses, and construct dependency graphs for
further optimizations such as prefetching [92], partitioning the execution [38], or code rewriting [37].
Unfortunately, real-world web applications heavily rely on language-level dynamic capabilities,
which makes static analysis challenging [24, 74]. These dynamic capabilities allow applications
to decide when and what SQL statements will be issued at runtime. For example, Java provides
ClassLoader, a native utility to incorporate class definitions (i.e., data members and methods)
at runtime [82]. Hibernate [61] uses this feature to achieve the lazy loading of database rows. In
Figure 1, the loading of stock information of a product could be deferred until product.getStock()
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is called at line 8. Internally, when invoking em. find(Product.class, pid) atline 6, this method
internally creates a subclass of Product that overwrites the original getStock() method. The
corresponding method in the subclass will issue appropriate SELECT statement(s) if the stock
information has not been loaded from the database yet. Since the subclass definition is generated on
the fly at runtime, it is non-trivial for static analysis methods to know the program behavior (e.g.,
what and when each SQL statement will be issued) at compile time. In addition to lazy loading, web
applications also use language dynamism for aspect-oriented programming [100] and declarative
transaction management [101], which potentially affect the behaviors of almost all their APIs and
effectively render static analysis unfit for today’s web applications.

Furthermore, constructing mapping rules between ORM interfaces and SQL statements is a
daunting task. On the one hand, existing ORM frameworks expose numerous public interfaces
actively used by web applications today. For example, we found hundreds of distinct ORM inter-
faces [10, 21, 47, 62, 102] used by the 50 most starred applications mentioned in §2.1. Meanwhile,
even the seemingly simple em. find() interface in Figure 1 has rather complex internal logics—
depending on the data class definition, it might generate complex equi-joins [104] and additional
validation statements [25, 59]. Thus, it is non-trivial to determine the SQL statements issued by
ORM-backed applications. Even worse, the large scale of codebases in real-world web applications
makes static analysis techniques even more difficult. For example, the application in Figure 1 has
328k lines of code (LOCs) for its business logic implementation and the extensive use of third-party
libraries, notably ORMs, bloats the code base size to 1.2M LOCs. In addition, we instrumented the
JVM runtime to count the Java bytecode instructions and found that critical APIs like addCart [29]
and purchase [30] execute around 840M and 710M bytecode instructions, respectively. This gives
us some clues on why previous work [37, 38, 92] only evaluates TPC-C and TPC-W benchmarks or
outdated small-scale applications like RUBiS or RUBBoS [83, 84].

3 WeBridge Overview

WeBridge is the first system that brings the benefits of stored procedures to real-world web
applications without manual efforts.

Insights. WeBridge is based on two insights. First, advances in concolic execution [23, 32, 63, 65,
79, 87, 93, 97, 98] provide suitable tools to analyze programs that employ language-level dynamic
capabilities and generate code at runtime. Unlike other dynamic analysis methods, such as taint
analysis [95], concolic execution yields not only symbolic relationships between program variables,
but also precise control dependencies among program statements for specific program paths. Such
information is essential for maximizing the number of interactive SQL statements in the synthesized
stored procedures. Second, while web applications have thousands of possible program paths, in
practice, only a few hot program paths are frequently executed. Therefore, instead of analyzing all
possible program paths at runtime, we can optimize hot program paths only, which significantly
improves performance while reducing analysis effort. This observation is supported by [70] and
confirmed by an e-commerce application trace dataset [67]. The dataset contains a user request
history with request types and parameters. When replaying the trace on Broadleaf [7], an open-
source e-commerce application, we found that only 12 distinct program paths were executed, with
the two hottest paths accounting for 96.3% of the requests.

Our Approach. Based on the above insights, WeBridge transforms database accesses into stored
procedure for only hot paths with concolic execution. To avoid runtime overhead, WeBridge
offloads the analysis to an offline component. Figure 4 shows the architecture, consisting of an
offline compiler and a runtime library. The offline compiler synthesizes stored procedures using
application source code and recorded program paths as input. The runtime library, before synthesis,
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RequestSj > Responses
Web Application and ORM Database
Runtime Library select/update/...
Database Access Library
Recorder (§4.1) Driver (§6)
call sp(...)
Recorded Stored Procedure Stored
Paths Metadata Procedure
Hot Path Hot Paths Stored Procedure
Identification ——— > Synthesis (§5) /
(§4.2) Offline Compiler Optimization (§7)

Fig. 4. The overall architecture of WeBridge.
records application execution paths and, after synthesis, intercepts interactive SQL statements with
invocations to the synthesized stored procedures.

To elaborate, the recorder in the runtime library records the states of API execution, including user
requests, execution results of SQL statements, and external method calls (§4.1). This information
concisely represents the program paths and is sent to the offline compiler. Note that the runtime
library is integrated at the database access library (e.g., JDBC [2]) level, which is transparent to
both web applications and web frameworks, including ORMs. After collecting sufficient recorded
paths, the compiler wakes up to synthesize stored procedures. It first identifies hot paths from
recorded paths (§4.2), then concolically replays hot paths to produce a dependency graph (§5.1),
and finally compiles the dependency graph into stored procedures (§5.2). Moreover, WeBridge
optimizes the stored procedures code by reducing the number of instructions via speculative
execution (§7). The generated stored procedures are then installed in the database and registered in
the driver of the runtime library. At runtime, when executing the APIs that have synthesized stored
procedures, the driver intercepts all query invocations. It instead invokes the stored procedure
when the corresponding API tries to issue the first SQL statement, and buffers the result. With
buffered results, WeBridge continues to execute the application’s code and uses the buffered results
to answer interactive SQL statements (§6.1). When the application tries to execute a query not
captured by the stored procedure (aka a cold-path SQL), the driver resumes normal execution and
issues interactive SQL statements.

Take the API in Figure 1 as an example. Each time this API is invoked, WeBridge records API
inputs (e.g., the value of uid) and the results of SQL statements. It then replays the execution
offline with the recorded information. Assuming the product-available path, i.e., one where the
condition product.getStock()>0 at line 8 is true, is frequently executed, WeBridge synthesizes a
corresponding stored procedure for this path. Figure 2 shows the synthesized stored procedure,
excluding lines 10-12, which correspond to another cold path. The stored procedure also returns
markers indicating executed SQL statements (§6.2). Note that the condition which checks product
availability is preserved in the stored procedure at line 5. After the stored procedure is installed,
it will be invoked to process future requests. If a future hot-path request arrives, after invoking
the stored procedure and buffering its results, the driver in the runtime library will find that
all the interactive SQL queries made by this execution exactly match those performed by the
stored procedure. Therefore, the driver will not issue any interactive SQL statements and use
buffered results instead. When processing cold-path requests, i.e., the one whose execution finds
the product is out of stock, the stored procedure only executes Q1-Q3, skipping Q4-Q6 due to the
branch condition at line 5. WeBridge driver can detect that only Q1-Q3 have been executed and Q7,
which sits on the cold path, is skipped. Therefore, it only uses the buffered results for the first three
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User Inputs Query Results
Response regHandler(input){ QueryResult queryCall(..) {
recordInput(input);
recordRetVal(queryRes) ;.
} return queryRes;
request handling method |} query call method
Result externalCall(..) { External Method Results

recordRetVal(result);
return result;
} external method

Fig. 5. WeBridge instruments the application to record the external states used in application.
queries at lines 4-6 in Figure 1 and issues the original SQL statement at line 19, where the driver
interception ends.

4 Recording and Identifying Hot Paths

WeBridge records execution paths at run time during normal execution and identifies hot paths via
offline replay. A hot path is one that has been replayed more times than a certain threshold.

4.1 Recording Paths

To record a path and further replay it deterministically, conventional solutions [43, 46, 48] record all
the program inputs and track all shared memory accesses. However, the runtime overhead incurred
by tracking shared memory accesses is significantly high, resulting in a latency increase of up to
100% [43, 54, 80, 86, 94]. Fortunately, we observe that modern web applications often intentionally
avoid shared memory access. A survey [5] shows that most web services are architected in the
REST style [52], which is a widely accepted architectural style that defines a set of unified APIs for
client-server communication. The REST style requires that client requests include all the necessary
information for processing, and disallows any use of global application states on the web server [69].
WeBridge assumes REST-style web applications, where there is no global states at the application
side. Due to the absence of shared memory access, it suffices to only record external inputs of a
request for deterministic replay.

To achieve this, WeBridge has devised a lightweight recording method that only records the
external states, i.e., user inputs, query results, and return values of external method calls at runtime
for each path. WeBridge utilizes existing instrumentation tools [1] to record these three kinds of
external states. Figure 5 illustrates the instrumentation process. To record user inputs, WeBridge
intercepts the request handling method and stores the request input at the beginning of the method.
To record query results, WeBridge intercepts the database accesses calls and records the results
before returning from the call. To record external method calls, such as I/O operations and retrieving
current system time, WeBridge also intercepts invocations to these methods and records their
return values.

4.2 ldentifying Hot Paths

A path is hot if it is replayed over a predefined number of times. WeBridge replays each recorded
path with external states on a separate application instance. This involves intercepting database
access and external method calls, using recorded values to simulate the execution. During the
replay, WeBridge collects the branching decisions of each individual branch instruction, which
uniquely identifies a path. Formally, a path P is defined as P = [by, by, ..., b, ], which is a sequence
of n boolean branching decisions b;. If b; = 1, it signifies the i-th branch decision took the ‘then’
branch; otherwise, the ‘else’ branch was taken. Two recorded paths are considered the same if their
sequences of branching decisions are identical.
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External External External External
States 1 States 2 States 3 States 4

Branch Instructions
o~

Path 1: Hot Path 2: Hot Path 3: Cold Path 4: Hot '
Fig. 6. An example on how to identify a hot path.

Figure 6 illustrates the process of identifying a hot path, with four recorded paths (path 1-4)
along with their corresponding inputs denoted as external states 1-4. WeBridge replays each path
and produces a sequence of recorded branch decisions for each path. For instance, path 1 records
[0,1,0, 1] as branch decisions. Next, WeBridge compares the branch decisions with those of replayed
paths’. For example, after replaying path 4, it compares the branch decisions with paths 1-3 and
finds that paths 1, 2, and 4 share the same set of branch decisions (i.e., [0, 1,0, 1]). This indicates
that the same path has already been replayed twice (via states 1 and 2). Assuming the threshold of
identifying a hot path is two, WeBridge regards the path replayed by state 4 as a hot path.

5 Synthesizing Stored Procedures

WeBridge synthesizes stored procedures for hot paths in two steps. It first replays the hot path and
collects all the executed SQL statements. At the same time, it uses concolic execution to extract the
control and data dependency of SQL statements. The extracted results are then represented as a
dependency graph. Second, it synthesizes stored procedures from the dependency graph with a
rule-based rewrite. Before discussing the details, we briefly introduce necessary background on
concolic execution.

Concolic Execution. Concolic execution [65, 98] is a technique that captures the precise
data and control dependencies of concrete program executions. Given a program and a concrete
input, a concolic execution engine interprets the program both concretely and symbolically. For
example, given a concrete input variable a with a value of 10, interpreting a single-line program
b=a+1 assigns the value 11 to the program variable b and creates a symbolic variable b_sym with
the expression ADD(a_sym,1). Two additional data structures are used to capture the precise
dependencies: a symbolic store and a path condition. The symbolic store maps program variables to
their corresponding symbolic variables. Each symbolic variable contains a symbolic expression that
represents how it is computed based on other symbolic variables. The symbolic store is read and
updated each time the execution engine interprets an assignment instruction. The path condition
is a special Boolean symbolic expression—the conjunction of all branch conditions taken along the
current executing path. It is updated each time the execution engine enters a new basic block (i.e.,
when a branch is taken). Therefore, it predicates whether certain program inputs would cause the
program to make the same branching decisions as the current concrete execution.

5.1 Constructing Dependency Graphs

A dependency graph is a directed graph, where each vertex represents the issue of a SQL statement
in the path during execution. Each edge represents that the SQL statement in the source vertex is
issued before the SQL statement in the target vertex. The detailed definition of the vertex is shown
below.
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Fig. 7. The dependency graph for the Figure 1 example.

1: Node {

2:  String template; // sql statement template

3 Expression[] parameters; // parameters expression

4: Constraint[] conditions; // control flow constraints
5 Expression[][] queryResult; // query result of the sql
6:  Node[] children; } // successors of the node

The vertex consists of five parts: template and parameters represent the query template string
and parameters, where each parameter can be a constant value or a symbolic expression. WeBridge
currently supports SELECT [FOR UPDATE], SELECT INTO, UPDATE, DELETE, INSERT, BEGIN, COMMIT,
and SET VARIABLE statements. conditions represent the set of path conditions leading to this query
statement. queryResult is the execution result, which is a two-dimensional array with potentially
multiple rows and columns. children links a vertex with other vertices in the dependency graph,
indicating the SQL statements executed after the vertex.

To illustrate, the left half of Figure 7 shows the dependency graph extracted from the application
code of Figure 1. It contains seven vertices, each corresponding to a SQL statement. For instance,
Q1 (line 4) in Figure 1 is the root vertex in the graph, with the query string “SELECT * FROM USER
WHERE id = ?” as the template. The conditions are true since Q1 is unconditionally executed.
The input uid from user requests serves as the paramin Q1. queryResult of Q1 is the selected user
information, where cartId_user serves as the param of Q2, indicating Q2 data depends on Q1.

WeBridge constructs a dependency graph for a hot path in three steps. Algorithm 1 outlines
the dependency graph construction process. First, it performs concolic execution on the hot path
to track dependencies among queries and external states. Specifically, WeBridge re-executes the
identified hot path, marking all external states as symbolic values to track the dependency among
queries and external states. In this way, all program computations related to external states are
tracked in the symbolic store and path condition. Second, WeBridge intercepts database access
API calls to create vertices and edges accordingly. When a query is issued via such API, WeBridge
extracts the query’s template, parameter expressions, and current path conditions to construct a
vertex in the dependency graph. WeBridge then links the constructed vertex to the appropriate
position of the dependency graph. Finally, WeBridge merges dependency graphs constructed from
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Algorithm 1: Dependency graph construction.
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ConstructDG(ExternalState state, Instruction[] instructions):

vertex = nil; curConds = true; graph = emptyGraph; store = {}
markSymbolic(state.inputs, store) // mark the input state as symbolic
foreach instr in instructions:
switch instr:
case instr is ‘invoke prepareQuery’:
vertex = createVertex(instr.sql)
case instr is ‘invoke setParam’:
vertex.parameters.add(instr.idx, store[instr.param])
case instr is ‘invoke execute’:
vertex.conditions = curConds
queryRes = nextQueryResult(state.queryResults)
/ continue execution with symbolic query result
markSymbolic(queryRes, store)
vertex.queryResult = store[queryRes]
/ append the new vertex to the tail of the graph
graph.tail.children.add(vertex); graph.tail = vertex
// execute the instruction concolically
ConcolicExecute(instr, curConds, store)
if instr is ‘external call’:
markSymbolic(nextReturnedValue(state.returnValues), store)
return graph

ConcolicExecute(Instruction instr, PathCondition pc, SymbStore s):

if instr is ‘if e then s_true else s_false’:
if e == true: pc = pc A store[e]; goto ‘s_true’;
else pc = pc A —store[e]; goto ‘s_false’;
if instr is ‘assign x=e’: store[x] = e
if instr is ‘binOp x y to z’:
// creating a binary symbolic expression, and updates the symbolic store
store[z] = binOpExp(store[x], storelyl, instr.op)

MergeGraph(Graph g, Graph t):

// g: existing dependency graph, t: new graph constructed from another hot path
equalVertices = longestEqualVertexSequence(g, t)
foreach vertex in t:
if vertex in equalVertices:
n = g.getEqualityVertex(vertex)
n.conditions = n.conditions V vertex.conditions
// adjust the parent and child vertices for the merged vertex n accordingly
n.children.add(vertex.children)
return g

each new hot path into the existing dependency graph. The final merged graph retains the query
and dependency information of all hot paths.
Concolically Executing Hot Paths. This part involves (i) marking the external state as sym-
bolic (lines 3, 14, 21) by associating each variable in state with an initial symbolic value in store, then
(ii) updating the path condition curConds and the symbolic store based on the executed instruction
(line 19). Line 24-31 shows how curConds and store get updated for branching, assignment, and
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binary operation instructions. For instance, consider a binary instruction ‘add x y to z’ that

adds the value of x and x to variable z. During concolic execution, a new symbolic expression

binOpExp(sym_x,sym_y,add) representing the addition of symbolic variables sym_x, sym_y is
associated to variable z. Note that we only include a part of the instructions for ease of presentation,
and refer readers to [26, 31, 32, 87, 97, 98] for other types of instructions in various languages.

Creating Dependency Graphs. The vertices and edges in the dependency graph are created
when the database access APIs are invoked. To achieve this, WeBridge intercepts each invocation
instruction to these APIs, then parses the SQL query templates and parameters from the instruction
operands. WeBridge assumes the application uses three database access APIs:

e prepareQuery(String sql): Initialize a query with the template string sql. WeBridge extracts
the SQL template string from the instruction’s operand and creates a vertex (lines 6-7).

e setParam(int idx, Object param): Set the idx-th parameter of the SQL statement to param.
WeBridge extracts the symbolic representation of the parameters from the symbolic store, and
add them to the vertex (lines 8-9).

e execute(): Issue the SQL query statement to the database for execution. WeBridge first records
the path condition—encoding the control flow constraints leading to the execution of the query—
in the vertex (line 11). Next, the symbolic representation of the query execution result is added
to the vertex (line 15), where a vertex completes its creation. Finally, the vertex in linked to the
tail of the dependency graph (line 17).

Notice that the dependency graph construction algorithm is language agnostic and only requires the

database access libraries (e.g., JDBC) to provide the functionalities of the above APIs. Algorithm 1

ends when all instructions along the path finish re-execution.

Merging Dependency Graphs. WeBridge combines two vertices from different dependency
graphs into a single vertex if they are equal. Specifically, vertex a and vertex b are equal if
a.template is the same with b.template, and each parameter in a.parameters is the same
with each parameter in b.parameters. Merge begins by finding the longest sequence of equal
vertices among two graphs (line 36). Then, each vertex in the new graph t, which is also present in
the equalVertexes, is merged into the existing graph g. When merging two equal vertices, the
path conditions are updated to the disjunction of the two vertices (line 40). The rest of the vertices
that cannot be merged are simply linked to the children of the merged vertex n (lines 42).

As shown in Figure 7, the right half contains two dependency graphs constructed for path 1
(stock > 0) and path 2 (stock < 0). The dependency graph for path 1 contains the query execution
sequence from Q1 to Q6, while path 2 contains Q1-Q2-Q3-Q7. Thus, the longest sequence of vertices
in the two graphs that have Equality property is Q1-Q2-Q3. These vertices are then merged into
the leftmost graph. To illustrate, the vertex of Q1 has the path condition true in both path 1 and 2.
Thus, the merged Q1 has the path condition true V true, which is also true. For vertices that do
not have the Equality property (i.e., Q4-Q5-Q6 and Q7), they are linked to the children vertices of
Q3, with path conditions unchanged.

5.2 Generating Stored Procedures

Given a dependency graph, WeBridge generates stored procedures by transforming each vertex
into stored procedure code in a rule-based manner. These rules turns the query template string,
symbolic parameters, and path conditions into stored procedure code. Due to the limitation of our
concolic execution engine and the database support for stored procedures, WeBridge needs to split
the dependency graph upon inconvertible computations.

Inconvertible Computations. There are two types of computations that WeBridge currently
does not convert: (i) external method calls, such as java.lang.System.currentTimeMillis(),

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 64. Publication date: February 2024.



WeBridge: Synthesizing Stored Procedures for Large-Scale Real-World Web Applications 64:13

Algorithm 2: Stored procedure generation.

1 SplitGraph(Graph graph):

2 // cut the graph for each vertex depending on states that are inconvertible
graphSet = emptySet; startPoints = endPoints = emptylList

w

4 // 1. identify the starting points

foreach vertex in graph:

6 if vertex contains computation that cannot express in stored procedure, or an external call
is executed between two vertices:

7 startPoints.add(vertex)

«

3

// 2. identify the ending points

9 foreach vertex in graph:

10 if vertex contains no child vertices, or all child vertices are in startPoints:
11 endPoints.add(vertex)

12 // 3. construct subgraphs

13 foreach vertex in startPoints:

14 // construct subgraphs from starting to ending points

15 subGraph = emptyGraph; subGraph.root = vertex
16  foreach v between vertex and endPoints:

17 subGraph.add(v)

18 graphSet.add(subGraph)

19 return graphSet

20

21 SynthesizeSP(Graph subgraph):

22 SoredProcedure sp = emptySp

23 // iterate through each vertex in the subgraph

24 foreach vertex in subgraph:

25 qCode = constructQueryCode(vertex.template,

26 vertex.parameters, vertex.queryResult)

27 gBlock = constructIfThenCode(vertex.conditions, qCode)
28 sp.addSourceCode (gBlock)

29 //identify stored procedure parameters

30  foreach expr in vertex.parameters and vertex.conditions:
31 if expr depends on symbols not defined in graph:

32 sp.addInputParameter(expr)

33 return storedProcedure

because their implementations are unavailable to WeBridge’s concolic engine, and (ii) array opera-
tions, such as bytecode iaload and iastore, because MySQL, the database system that WeBridge
currently builds on, does not provide corresponding array types and operations in its stored pro-
cedures. For other computations, we could always construct translation rules to express them in
stored procedures, which we will elaborate on later. To support the first case, we could model the
semantics of those calls and craft specific rules. To support the second case, we could utilize a
more capable database system. These are left for future work. To track the dependencies among
SQL statements and inconvertible computations, we extend Algorithm 1 to mark the result of all
inconvertible computations as symbolic and use concolic execution to track such dependencies.
Splitting Dependency Graphs. To split a graph into subgraphs, WeBridge first identifies the
starting and ending points for each subgraph. Then, it puts all vertices from the starting point to the
ending point into the subgraph. A vertex is a starting point if it contains inconvertible computations
in path conditions or parameters, or an external call is executed between two consecutive vertices.
The ending points are vertices with no child node or only starting points as child nodes. With
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the identified points, WeBridge constructs subgraphs containing all the vertices from the starting
point to the ending points. Algorithm 2 shows the graph-splitting process. It starts by identifying
the set of startPoints and endPoints using the mentioned criteria (lines 5-11). Each starting
point serves as the root vertex of a subgraph (line 15), and it adds all the vertices from the root to
endPoints to the subgraph (lines 16-18).

To illustrate, assuming we add an additional parameter, updateTime to Q7 (line 19) in Figure 1,
which is derived from an external function call to get the current system time. Figure 8 demonstrates
the corresponding dependency graph. As the stored procedure cannot express computation derived
from an external function, the dependency graph on the left side in Figure 8 is split into two
subgraphs that do not contain inconvertible computations. Each subgraph corresponds to a specific
code path: subgraph 1 corresponds to the code that executes Q1-Q6, while subgraph 2 corresponds
to the code that only executes Q7. Notice that we do not lose control or data dependency among
queries after the split (e.g., we still know that Q7 control depends on Q3). Such information is used
to determine the execution order of stored procedures.

Synthesizing Stored Procedures from Subgraphs. Given a subgraph, WeBridge synthesizes
the source code for a stored procedure in a rule-based manner, similar to existing source-to-
source compilers [8, 9, 89]. These rules are manually crafted and assumed to preserve semantics.
Specifically, WeBridge currently includes 71 transformation rules, which are sufficient to handle
the six applications used in our evaluation. These rules encompass 21 arithmetic operations (e.g.,
+/=/%/%), 6 comparisons (e.g., ! =/==/>=), 19 data mapping and type casting operations (e.g., casting
long to int), and 25 string manipulations (e.g., toUpper()).

The SynthesizeSP() function in Algorithm 2 illustrates the transformation from a subgraph
to a stored procedure. The stored procedure source code consists of two parts: the code block
that issues SQL query statements (lines 25-28) and the necessary input parameters (lines 30-32).
WeBridge synthesizes the code block in two steps. First, concatenate the SQL statement template
string with appropriate parameters (line 25). Parameters in the vertex are represented in symbolic
form, and we use transformation rules to rewrite them into equivalent stored procedure syntax
expressions. For instance, binOpExp(sym_x,sym_y,add) is transformed into x+y. Additionally,
each variable in queryResult is assigned to the execution result of the SQL statement, allowing
subsequent queries to access results from previous queries. Second, wrap the above code block with
a conditional statement (line 27): IF(pc is TRUE) THEN (issue query), where pc is rewritten
from the conditions of the vertex. In this form, the query executes only if pc evaluates to true.
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1: CREATE PROCEDURE spl(uid_in INT, pid_in INT) BEGIN

2 DECLARE userId_user INT; DECLARE cartId_user; DECLARE mk_1 TINYINT=0;

3:  SELECT * INTO @userId_user,@cartId_user FROM USER WHERE id=@uid_in [QI]
4 SELECT @userId_user,@cartId_user;SET mk_1 = 1;

5:  SELECT * INTO .. FROM CART JOIN .. ON .. WHERE id = @cartId_user [Q2]
6: SELECT * INTO .. FROM PRODUCT WHERE id = @pid_in [Q3]
7: IF @stock > @ THEN

8: INSERT INTO ITEM(itemId, productId) VALUES (..) [Q4]
9: INSERT INTO CART_ITEMS(cartId, itemId) VALUES (..) [Q5]
10:  UPDATE PRODUCT SET stock=stock - 1 WHERE id = @pid_in [Q6]
11: END IF

12: SELECT @mk_1, ..; END

13: CREATE PROCEDURE sp2(stock INT, pid_in INT, time BIGINT) BEGIN

14: IF @stock < © THEN

15: INSERT INTO LOG(pId, eventName, updateTime) VALUES (.., time) [Q7]
16: END IF END

Fig. 9. Synthesized stored procedures for Figure 8.
To synthesize the input parameters, WeBridge first identifies all symbolic expressions that depend
on a vertex in other subgraphs, inputs, or external method return values (values not contained in
the subgraph). Then, for each identified symbolic expression, synthesize a corresponding input
parameter using the same name and type of the expression (line 32).

Figure 9 shows the synthesized stored procedures for the subgraphs in Figure 8. Subgraph 1
is transformed to sp1 (upper half of Figure 9) and subgraph 2 to sp2 (bottom half). Due to space
limits, we omit the query result selection statement (line 4) for Q2-Q7. The usage of variable mk_1
(lines 1,4,12) is explained in §6.

Remarks on Preserving Transaction Boundaries. Note that WeBridge places the SQL state-
ments, including BEGIN and COMMIT commands, unmodified in the generated stored procedures.
As a result, the generated stored procedure can contain multiple transactions or partially overlap
with active transactions. Major database systems, such as MySQL and Oracle, treat stored proce-
dures simply as batches of statements and they do not implicitly start or commit a transaction for
the procedure. This means that if transactions start before or commit after the stored procedure,
they will not be accidentally terminated early by the stored procedure. As a result, the generated
procedure neither enlarges nor reduces transaction boundaries from the original application.

6 Integration into Web Applications

WeBridge driver automatically integrates the generated stored procedures into the running applica-
tion, issuing stored procedures instead of the original interactive SQL statements for all database
accesses. For unoptimized cold paths, the driver automatically switches back to issue interactive
SQL statements.

6.1 Serving Hot Paths with Stored Procedures

When a hot path request arrives and the first SQL statement in the API is invoked, the driver
intercepts the SQL statement and instead invokes stored procedures with corresponding parameters.
These parameters are collected in the same way as described in §4.2, as they are external states. The
driver then waits for the database to complete execution and return the results of all statements
from the stored procedure. These results include query result sets and the execution status of
writes, such as the number of rows affected. Finally, the driver buffers the results and resumes
the execution of the application. For the invocations of the first and subsequent SQL statements,
WeBridge answers them with corresponding buffered results from the buffer, without resorting
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to the database. Each buffered result is used only once and is discarded after it has been used to
answer one query.

To illustrate, assume WeBridge generated a stored procedure Figure 9 by a hot path collected
in application Figure 1, where stock>0 always holds. When the application invokes Q1 (line 4 in
Figure 1), the driver intercepts it and executes a stored procedure invocation statement—call sp1(uid,
pid) —with collected concrete parameters of uid and pid. The driver then suspends the application’s
execution and waits for the database to complete the execution of the stored procedure. Once the
database completes execution, the driver receives the execution result of Q1-Q6 and buffers them
in memory. It then resumes the application’s execution and directly returns the buffered results for
subsequent calls to Q1-Q6.

6.2 Fallback Mechanism for Cold Paths

WeBridge invokes a stored procedure upon the first SQL statement arrives, regardless of whether
it is on a hot path or a cold path. When a cold path arrives, the stored procedure prevents the
execution of any SQL statements that should only be executed on hot paths. This is because a path
is determined solely by the external states (§4.2), which are all tracked by concolic execution (§5.1).
The path conditions in the generated stored procedure will also reflect changes in external states
that can lead to a cold path. For example, let’s consider spI in Figure 9, which is generated from
a hot path. Assuming a cold path arrives where stock>0 evaluates to false, the stored procedure
tracks the derived expression stock>0 as a condition to execute Q4-Q6, since stock comes from the
result of Q3. If the stock number changes and result in a cold path, the stored procedure correctly
stops issuing SQL statements at line 7, and returns the execution results of Q1-Q3 to the driver in
the application. The driver is aware that only a part of the SQL statements is executed and only
returns buffered results to the following calls to Q1-Q3. After that, the driver switches back to
invoke interactive SQL statements for the following SQL statements (i.e., Q7 in the unoptimized
cold path).

To perform this check, we associate each query in the stored procedure with a “marker” vari-
able indicating whether it has been executed (line 2 in Figure 9). Markers are boolean variables
individually declared and set for each query. For each query i, we add a “SET marker_i=true;”
statement right after the query statement (line 4). All values of markers are returned to the driver
by an additional “SELECT @marker_1, @marker_2,...;” statement added at the end of stored
procedure (line 12). By analyzing returned markers, WeBridge knows which queries were not
executed and switches back to normal execution accordingly.

6.3 Exception Handling

Exceptions are commonly used in web applications to report and handle runtime errors. WeBridge
ensures that exceptions that would be thrown in the original application are thrown as is at the
correct timing, and no new exceptions will be thrown by WeBridge. The only chance that WeBridge
might alter the exception behavior is when it intercepts JDBC calls. Therefore, we thoroughly
examined all potential exceptions that could be thrown by the MySQL JDBC driver, according to
its specification [15]. Since stored procedures have no impact on the exceptions for statement-wise
execution errors, if such exceptions occur during stored procedure execution, WeBridge only needs
to catch and re-throw them when the application has reached the triggering statement. For stored
procedure-specific exceptions, which only occur at the start of stored procedure invocation accord-
ing to the specification, WeBridge will simply fall back to executing the original web application’s
code. This is safe because no statement has been executed yet, and the application will run as if
WeBridge is absent.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 64. Publication date: February 2024.



WeBridge: Synthesizing Stored Procedures for Large-Scale Real-World Web Applications 64:17

Q4 (Line 12) L,
conds: uid > 0 A rs_stock > 0

>

Q3 (Line 6)

Original Graph
Q7 (Line 19)
conds: uid >0 A rs_stock <0

——————— Prune: wid>0 —-=—=-=----

Q4 (Line 12)
>
. conds: rs_stock > 0
> Q3 (Line 6) Graph with
Q7 (Line 19) Optimized Conditions
conds: rs_stock <0

Fig. 10. An example of the path condition pruning. The constraint uid>0 of Q4, Q7 is pruned, because their
neighbor vertices also contain the constraint uid>0.

7 The Speculative Execution Optimization

We introduce a speculative execution optimization to boost the performance of stored procedures. It
is important to note that speculative execution is orthogonal to existing optimizations on procedural
code [49, 53, 57, 68, 91].

Pruning Unnecessary Path Conditions. To avoid costly path condition evaluation inside
stored procedures, WeBridge proposes a heuristic to speculatively remove path conditions that
solely distinguish cold from hot paths. The heuristic is to eliminate constraints that are common
among the vertex’s neighbor vertices. Such constraints yield the same result in all paths and do not
help distinguish different hot paths. WeBridge first identifies the neighbor vertices for each vertex
in the dependency graph. Then, for each constraint of the vertex, WeBridge checks if it also exists
in all other neighbors. If so, the constraint is pruned. If a vertex does not have any neighbors, its path
condition can be simplified to “true”. Figure 10 illustrates an example. Q4 and Q7 are neighbors of
each other in the dependency graph. The constraint “uid > ©” is common in both Q4 and Q7, so
that it can be removed.

Handling Uncertain Side Effects. Pruning path conditions can cause stored procedures to
execute incorrect SQL statements. For read-only stored procedures, we could simply revert to
normal execution in such situations. However, if stored procedures contain side effects (aka writes),
WeBridge should only commit those effects when the speculation is correct. This is achieved by
reusing the application transactions: when generating stored procedures, WeBridge now additionally
splits at the end of each write transaction and excludes the final commit of such transaction from
the generated stored procedures. In this way, after procedure execution, those write transactions
remain active and WeBridge has a chance to validate their execution. Therefore, WeBridge can
decide whether to commit or roll back. In addition, WeBridge adds savepoints [3, 4] before each write
statement, so that it can undo only the incorrect writes while maintaining the result of previous
correct statements. For standalone writes, although they are conceptually a “begin-write-commit”
transaction, WeBridge instead treats them as inconvertible operations. Otherwise, splitting them
into “begin-write” and “commit” causes additional round trips.

Validation and Recovery. To validate if the speculation is correct, WeBridge verifies whether
the executed SQL statements in stored procedure match the ones requested by the application. It
first checks the marker variables for each query (§6.2) to determine whether a query is executed.
Then, for executed queries, WeBridge compares the SQL query to be issued by the application with
the one executed in the stored procedure. If the query strings and parameters are not the same,
WeBridge considers that as an incorrectly executed SQL query and recovers from it. If the first
incorrect statement detected is a read, WeBridge rolls back the transaction to the nearest savepoint
after that read, and discards the cached results of that and subsequent queries. If there is no such
savepoint (i.e., no write exists after that read), then a rollback is unnecessary and WeBridge only
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discards the cache accordingly. If the first incorrect statement detected is a write, WeBridge rolls
back the transaction to the nearest savepoint before that write, and discards the cached results of
subsequent queries. Note that there is always a corresponding savepoint for each write. Finally, for
queries not executed, WeBridge falls back to normal execution.

Remarks on Preserving Transaction Boundaries. Note that WeBridge reuses the original
application transactions to ensure correctness. It only excludes the last commit from the generated
procedure, without removing or adding any read or write operation. Therefore, it preserves the
original transaction boundaries.

8 Correctness

Due to space constraints, we only sketch a proof for the correctness of WeBridge. A full formal
proof is available at [16].

Assumptions. WeBridge assumes REST [52] style web applications, where there is no application-
side shared states. Consequently, the application code converted by WeBridge would only read/write
the local states of each request handler and is thus deterministic. This means that, given the same
local state and the same return values of both external method calls and SQL statements, a block
of bytecodes would always transition the corresponding request handler’s local state to the same
next state. Nondeterministic computations are only allowed via external method calls, which is
true for all the applications we evaluated. WeBridge also assumes that database states are only
updated by SQL statements and SQL statements are also deterministic, which means that, given
the same database state, a SQL statement would always output the same result and transition the
database into the same next state. If a SQL statement contains nondeterministic function calls like
random(), we could always factor them out as external method calls, and pass the return values as
SQL parameters.

Proof Sketch. The correctness condition of WeBridge states that, for any execution possible
with WeBridge, there is always an equivalent execution possible in the original application. We
first discuss the case of sequential requests. In this case, the key is to prove that, if a SQL statement
whose cached result is used by the API, then without WeBridge, the original API would issue the
same SQL statement, given the same user input, external method call results, and prior SQL results.
Applying this to the SQL statement sequence issued by the WeBridge-transformed API, we can
prove that the database state is always transformed the same way with and without WeBridge.
Similarly, we prove that local states are also transformed the same. As a result, any execution
possible with WeBridge is also possible without WeBridge. When there are concurrent requests,
we need to additionally consider how one API’s SQL statement sequence issued inside a stored
procedure might be interfered by another APT’s conflicting writes. We prove that, when such writes
interleave with a stored procedure, the execution is equivalent to one under the original application
with those writes interleaving corresponding source SQL statements in the same way.

9 Evaluation

We evaluate WeBridge to answer the following questions.

e Does WeBridge effectively improve the performance of real-world applications, both on latency
and throughput?

e How does WeBridge compare with existing works that reduce the latency of web applications?

e How much performance overhead does WeBridge incur?

9.1 Experiment Setup

Implementation. Our approach is language-agnostic and applies to applications written in both
statically typed and dynamically typed languages. Our current implementation, WeBridge, targets
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Fig. 11. End-to-end API latency (a—f) and throughput (g-I) results for the different APIs from the six applica-
tions evaluated. For latency results, X axis shows the APIs evaluated for each application, each rectangle
shows the P90 latency, and the upper/lower error bars indicate P99/median latency. For throughput results,
the workload requests each API with the same probability.

Names Category Stars LOCs Commits ORM Library
Broadleaf [7] E-commerce  1.6K 328K 18,086 Hibernate
Shopizer [11] E-commerce  3.2K 130K 1,148 Hibernate
Apollo [18] &21?22::;‘1“ 284K 59K 2,849 Hibernate
Sagan [20] Blogging 3.1IK 20K 3,038 Hibernate
My-Blog [13] Blogging 33K 42K 92 MyBatis
Pybbs [12] Forum 17K 15K 931 MyBatis

Table 1. Details of the applications used in the evaluation.

Java applications. For the runtime library, we implemented a library that records the user input
and external method calls via Java instrumentation API [64], and extended MySQL JDBC driver to
record each query’s ResultSet. For the offline compiler, we developed a concolic execution engine
based upon Zero-Assembler [81] interpreter of OpenJDK 8, consisting of around 8k LoCs in C++.
The stored procedure synthesizer is implemented as a separate Java library in about 4k LoC in C++
with 71 transformation rules. It produces MySQL-compatible stored procedures. The source code
of our implementation is available at [16].

Baselines. We compare WeBridge-transformed applications with the following baselines.
Original, which are the original applications without any modification. Orig+Pstmt, which are
the original applications with database-side prepared statements enabled. Prepared statements
allow the database to reuse the query parsing results, saving CPU time, a feature similar to stored
procedures. Prefetch+, which uses the prefetching approach [78, 92] to hide the database round
trips. The SQL statements and dependency information for Prefetch+ are acquired via concolic
execution rather than static analysis. Sloth-Sim, which uses the Sloth [39, 40] algorithm to reduce
the database round trips via batching. Since we don’t have access to Sloth’s implementation, we
report the theoretical round trip reduction instead.

Applications. We used six open-source Java real-world applications found on GitHub, as shown
in Table 1. These web applications cover four different categories: e-commerce, blogging, forum,
and configuration management. They are the most starred applications in each category on GitHub
and have been under active development for 4-10 years. All have been adopted for real-world
production use (e.g., Broadleaf has been used by 147 companies [14], and Apollo has been used by
290+ companies [17]). They use either Hibernate or MyBatis as the ORM library.
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Broadleaf Shopizer Apollo
API ID AC PC D AC PC UD GI GA
#HP 2 1 1 1 1 2 1 1 1

#SP 5 21 35 3 22 24
LOC 23 28 42 319 78 89 27 24 28

#IC 1 4 5 0 4 4 1 1 1
Sagan My-Blog Pybbs

API NP BD EP BD GI EB GT Ul GI

#HP 1 1 1 1 1 1 1 1 1

#SP 3 1 5 1 1 2 2 6 2

LOC 72 561 51 139 42 118 32 43 829

#IC 0 1 0 0 0 0 0 0 0

Table 2. Statistics of generated stored procedures. HP: hot paths, SP: stored procedures, LOC: lines of code,
IC: inconvertible operations

Workloads. We made our best effort to build realistic workloads. We collected real-world
application traces and workload statistics (e.g., the number of blog posts on a website), to build
our experiment workloads for the applications in each category. For e-commerce applications, the
workload is based on a real-world e-commerce user behavior dataset [67], with 285M user events
over seven months from a large real-world e-commerce website. This dataset contains three types
of user events: viewing a product, adding a product to a shopping cart, and purchasing a product.
We populated the database tables with 302.2k users, 16.7k products, 62 categories, and 344 brands
based on the metadata of the provided dataset. For blogging applications, the workload is based on
a website running one of the applications (e.g., Sagan [20] has a running website spring.io [19]).
Based on the statistics we collected from the website, we populated the database with 5k blogs and
eight projects. For the forum application, we built the workload based on a website running an
application similar to the application (e.g., we used statistics collected from Lobsters [60], which
is also a forum application with similar functionalities, to Pybbs [12]). The database is populated
with 9.2k users, 40k stories, and 120k comments. For the configuration management application,
since most companies use it internally, we did not find publicly available workloads. We resorted
to populating the database with the sample data provided by the application.

After populating the database, we issued HTTP requests to the application APIs and recorded the
time taken to complete each request. For e-commerce applications, we replayed the user events in
the order of the time each event occurred. For other applications, due to the absence of production
traces, we randomly issued requests to the APIs with valid parameters from the database. Each
experiment lasted for 15 minutes, and we regarded the first 5 minutes as the warm-up and only
recorded the results in the last 10 minutes. The threshold of hot path identification was 20 in all
experiments.

Testbed. We deployed a client server, a web server, and a database server separately for each
experiment. Each machine has eight 3.4GHz vCPUs and 16GB RAM. The web server hosts appli-
cations via the OpenJDK 8 JVM, and we used MySQL 5.7.25 as the database. Unless otherwise
specified, the network round trip time between machines is approximately 2.1 ms. The offline
compiler operates on a different machine from the ones mentioned above.

9.2 Application Performance

This section quantifies the request latency reduction and throughput of the six applications in Table 1
with WeBridge. For latency experiments, we report the applications’ end-to-end request processing
time (the 50th/90th/99th percentile latency) with and without WeBridge. For the throughput
experiments, we increase the number of clients until the total throughput reaches the peak.
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Fig. 12. Comparison with Prefetch+ and Sloth.

Summary. As shown in Figure 11, compared to the original application, WeBridge achieves up
to 79.8% median latency reduction (with a geometric mean of 58.1%) and up to 2Xx peak throughput
(with a geometric mean of 1.34X). The latency reduction mainly comes from the decreased number
of round trips. Meanwhile, the throughput improvement is attributed to both the avoidance of
repeatedly parsing and optimizing interactive SQL statements and the reduced duration of transac-
tions operating contented data items. Table 2 shows the statistics of the generated stored procedures.
On average, WeBridge generates 8.7 stored procedures for each API, and 1.1 of them are caused by
inconvertible computations.

E-Commerce Applications. We evaluated three APIs that correspond to the three events
found in the trace (§9.1): view product item details (ID), add products to shopping cart (AD), and
purchase products (PC). The majority of the events are view products, causing the workload to be
read-intensive.

Figure 11.a and Figure 11.b show the request processing time for each API. The result indicates
that WeBridge significantly reduces end-to-end request processing latency compared with the
original application, achieving 51%-79.8% median latency reduction. Figure 12.a and b show that
WeBridge surpasses “Prefetch+” in all experiments, with 47.8%—78.9% decreased median latency.
“Prefetch+” falls behind WeBridge because (i) the computations in both applications take far shorter
time than the database communicating time, and (ii) dependent queries cannot be fetched in a
single round trip, resulting in little overlapping opportunities.

The latency reduction achieved by WeBridge is largely attributed to the decreased number of
round trips. Figure 12.c and d compare the average number of round trips for each APIin the original
application, Sloth, and WeBridge. The result shows that WeBridge efficiently saves round trips,
with up to 94.1% reduction compared with the original application. In Shopizer, it reduces round
trips by 61.5%-73.5%, while in Broadleaf, it saves between 79.8% to 94.1% round trips. Furthermore,
WeBridge outperforms Sloth, with up to 57.1% more round trip reduction. This is because Sloth
cannot batch queries with dependencies, while both Shopizer and Broadleaf have a lot of dependent
queries. For example, 31% (4 out of 13) queries in Shopizer’s ItemDetails API depend on other
queries. As WeBridge if free of this limitation, it surpasses Sloth in all our experiments.

We next compare the throughput of the original applications with WeBridge-optimized ones.
Figure 11.c and f show that WeBridge achieves similar peak throughput with the original applications
with prepared statements enabled. However, WeBridge achieves peak throughput with fewer clients.
This is primarily because the CPU and memory resources in both the web server and the database
server are not the bottleneck when the number of clients is low. In these scenarios, network
latency is the main bottleneck for throughput. As a result, the lower latency in WeBridge leads to a
higher throughput compared with the original applications. As the number of clients increases,
the database server’s CPU becomes saturated, and the total throughput remains relatively stable
regardless of the increasing number of clients.

Blogging Applications. For Sagan, we evaluated the APIs for viewing the details of the blog
posts (BD) and creating/modifying blog posts (NP and EP). For My-Blog, we evaluated the APIs for
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browsing the index page (GI), viewing the details of the blog posts (BD), and creating/modifying
blog posts (EB for My-Blog). Mixing these APIs forms a write-intensive workload.

Figure 11.c and d report the request latencies of Sagan and My-Blog. The result shows that
WeBridge can reduce the median latency of the original applications by 33.5%-67.5%. Figure 11.i and
j report the throughput. WeBridge achieved 2x and 1.7X peak throughput of Sagan and My-Blog,
respectively. The increased throughput of WeBridge is gained by reducing the time transactions
hold locks. Take My-Blog as an example; the main bottleneck comes from the EB API, where the
application updates the content and category of the blog. In this API, all the SQL statements run
inside a single transaction, in which the database locks the record rows for the category being
updated. When the number of clients is far more than the number of categories (at peak throughput),
contention on rows in the category table greatly impacts the throughput. Since a transaction only
releases its locks at commit time, transactions updating the same category have to be blocked and
wait for its completion. The higher latency of the original application indicates a longer duration
for which a transaction holds locks and blocks other conflicting transactions. WeBridge can reduce
such blocking time by reducing the latency of the request, leading to a higher throughput.

Forum Application. For the Pybbs forum application, we evaluated the APIs for browsing the
index page (GI), getting the hottest 100 forum topics (GT), and viewing its own user information
(UI). The GI API contains SQL statements with join, order by, and aggregation, which are compute-
intensive. Figure 11.c reports the request latencies of Pybbs. The result shows that Pybbs achieved a
46.9%-70.8% reduction in median latencies, due to the reduction of network round trips. Figure 11.g
reports the throughput for Pybbs. At lower numbers of clients, the throughput linearly scales as
the client number increases. The network latency becomes the bottleneck and WeBridge surpasses
the original application. As the number of clients increases (to more than 10), the throughput
of both the original and WeBridge-optimized applications increases to nearly the same. This is
because the MySQL server’s CPU has already been fully saturated, due to the execution of the
compute-intensive SQL statements. Thus, the throughput cannot increase further as the number of
clients grows.

Configuration Management Application. For the Apollo configuration management applica-
tion, we evaluated the APIs for browsing the configuration management dashboard (GI), getting the
details of managed applications (GA), and viewing the administrator information (UD). Figure 11.f
shows the request latencies of Apollo. The result indicates that WeBridge reduces end-to-end
API latencies by 52%-62.7%. Figure 11.i reports the throughput of Apollo. For both the original
application and WeBridge-optimized application, the throughput scales linearly to the number of
clients, and the main bottleneck is the network latency. When the number of clients increases to
64, the benchmark was not finished because the web server ran out of memory and was killed by
the OS. This results in the final collapse of the throughput.

9.3 Factor Analysis

Effectiveness of Speculative Execution. We also evaluated Shopizer’s APIs with speculative
execution disabled, denoted as Basic Alg. The results, as shown in Figure 13, indicate that
speculative execution reduces the end-to-end latency by 10.6%-32.2%. This reduction stems from
eliminating the overhead of path condition evaluation in the database. Moreover, since path
conditions could contain array operations, pruning these conditions helps WeBridge avoid splitting
the dependency graph, thus generating fewer stored procedures. The ratio of cold paths is less than
1% and in these cases, speculative execution might fail. However, in such situations, WeBridge still
reduces the request latency compared to the original application. This is because usually a front
part of the SQL statements executed by the procedure is still correct, and WeBridge only falls back
to normal execution for the rest of the SQL statements.
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Impact of Different Network Delays. The improvement brought by WeBridge varies under
different network settings. We selected two APIs, Broadleaf’s ID and Sagan’s BD, which respectively
have the most and least latency reduction from the previous evaluation, and re-evaluated them
under different network latencies. The results, shown in Figure 14, reveal that for Broadleaf’s ID
API, there is more than a 30% latency reduction even with a 0.2 ms network delay. For Sagan’s BD
AP, there is a 19% latency reduction with a 1 ms network delay. When we increase the network
delay to 20 ms, the latency reduction becomes more significant, reaching 71%. Note that, at a 0.1 ms
network delay, Sagan’s BD API is slower than the original application, due to WeBridge’s runtime
overhead.

Runtime Overhead. Figure 15 shows the the time consumed by the database server, network
round trips, and the web server for three APIs in Shopizer. The majority of time is spent in the
network communication, which is reduced significantly by WeBridge as expected. Also, the time
spent in the database server is slightly reduced, from 12.5 ms to 11 ms, due to the absence of
SQL parsing and planning. However, we observed that with WeBridge enabled, the application
server consumes more time. On average, it increases from 1.8 ms (2% of total time) to 4.4 ms (9%
of total time). This is because WeBridge needs to record request inputs as well as to validate the
speculatively executed stored procedures.

10 Related Work

Static Analysis on Web Applications. Static analysis has been adopted to web applications
for various purposes [28, 37, 38, 41, 50, 66, 76, 92, 105]. One way is using static program analysis
techniques to obtain intermediate representations of the application and perform further analysis.
Previous works such as Pysix and StatusQuo [37, 38] have employed static dependency analysis to
construct an intermediate representation called the partition graph, which captures the dependencies
between program statements. With partition graphs, these approaches partition the application
into two parts: one executed on the web server and the other executed on the database server.
This partitioning helps reduce the latency caused by round trips to the database. Meanwhile,
DBridge [92] extracts the SQL statements in the application and prefetch their results to reduce
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Fig. 15. Latency breakdown of three Shopizer APlIs.
application latency. It used static analysis to construct a control-flow graph (CFG) of the application,
then perform query anticipability analysis on the CFG to determine the earliest point each SQL
statement could be issued.

Concolic Execution. Concolic execution has been extensively studied [33, 55, 65, 77, 96, 98, 110].
It is a program analysis technique that explores specific program paths. It associates each symbolic
variable with a concrete value to guide program execution. Most previous works used it for bug
hunting. After exploring an initial path, the concolic execution engine acquires the path conditions.
It then negates a constraint in the path condition and employs the SMT solver [27, 44, 45] to find
a satisfiable solution leading to another path. Unlike prior works, WeBridge employs concolic
execution to extract program control and data dependencies.

Web Application Performance Optimizations. Several studies have focused on reducing
network round trips between the web application server and the database by employing prefetching
and batching [36, 39, 40, 78, 90, 92]. For instance, Sloth [39, 40] batches queries’ execution through
lazy evaluation. However, it cannot batch queries with dependencies, whereas WeBridge supports
batching dependent queries into stored procedures. Some other works aim at reducing the database
processing times in web applications. For example, QBS [42] utilizes query synthesis technique to
transform the application code into more efficient query codes. Further, [107, 108] provide insights
into designing web applications that leverage ORM frameworks to issue more efficient queries, and
[34] proposes a bi-metric resource management approach to scale web applications more efficiently.

Stored Procedure Optimizations. Several methods have been proposed to improve the per-
formance of procedural codes in DBMSs. Some utilize program analysis techniques to transform
procedural code into more efficient declarative SQL [49, 56, 58, 85, 91]. For example, Aggify [56]
rewrites cursor loops into aggregate queries, opening up new optimization opportunities like
pipelining and computation push-down. Another line of research focuses on compiling interpreted
executed procedure code into natively executed code [53, 68, 71-73, 99]. The compiled code is
much more efficient than interpreted executed code and enables the application of existing code
optimization techniques to further boost the execution efficiency. WeBridge’s speculative execution
(§7) is orthogonal to above optimizations, allowing the stored procedures generated by WeBridge
to benefit from these existing optimizations.

11 Conclusion

We propose WeBridge, the first system that synthesizes stored procedures for large-scale real-world
web applications by compiling only hot paths via concolic execution. Our evaluation result shows
that the synthesized stored procedures can achieve up to 79.8% median latency reduction and up to
2x peak throughput.
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