
Sonata: Multi-Database Transactions
Made Fast and Serializable

Chuzhe Tang1, ZhaoguoWang1, Jinyang Li2, Haibo Chen1
1 Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

2 New York University

VLDB 2025 Research 48: Distributed Transactions II

• Transactions are an important programming abstraction.
• Ensures correctness in the presence of concurrent operation and failures.

Transaction Abstraction

Large-Scale
Applications

Transactional
Databases

Google
Cloud Spanner

Safeguarding Critical Business Logic

2

3

Transaction Processing
Transaction

Logic

SavingsChecking
$50$50

T1: withdraw(Checking, $100)
Begin Transaction
total := s_bal + c_bal
if total >= 100:

c_bal -= 100
Commit Transaction

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s_bal -= 100
Commit Transaction

T2: withdraw(Savings, $100)

3

Transaction Processing
Transaction

Logic
Transactional

Database
Submit

SavingsChecking
$50$50

T1: withdraw(Checking, $100)
Begin Transaction
total := s_bal + c_bal
if total >= 100:

c_bal -= 100
Commit Transaction

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s_bal -= 100
Commit Transaction

T2: withdraw(Savings, $100)

Concurrent Execution
(e.g., via two-phase locking)

read(c_bal)

lock(s_bal)
read(s_bal)

unlock()
···

lock(c_bal)

read(c_bal)

···

lock(c_bal)

waiting…

acquired!

3

Transaction Processing
Transaction

Logic
Transactional

Database
Correct
Result

Submit Return

Isolation: Serializable Execution

Txn 1 Txn 2 -$50
$50

SavingsChecking
$50$50

T1: withdraw(Checking, $100)
Begin Transaction
total := s_bal + c_bal
if total >= 100:

c_bal -= 100
Commit Transaction

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s_bal -= 100
Commit Transaction

T2: withdraw(Savings, $100)

ACID PropertiesConcurrent Execution
(e.g., via two-phase locking)

read(c_bal)

lock(s_bal)
read(s_bal)

unlock()
···

lock(c_bal)

read(c_bal)

···

lock(c_bal)

waiting…

acquired!

Atomicity Consistency Durability

4

Today: Evolving Applications
Use Case Static Pages

Architecture

Search Engines Social Nets Chat

Monolithic Service-Oriented Microservices MBaaS, PWAs,
Serverless, …

Streaming

4

Today: Evolving Applications
Use Case Static Pages

Architecture

Search Engines Social Nets Chat

Monolithic Service-Oriented Microservices MBaaS, PWAs,
Serverless, …

Streaming

Distributed Architectures

4

Today: Evolving Applications
Use Case Static Pages

Architecture

Search Engines Social Nets Chat

Monolithic Service-Oriented Microservices MBaaS, PWAs,
Serverless, …

Streaming

Distributed Architectures

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Partition
& Scale

4

Today: Evolving Applications
Use Case Static Pages

Architecture

Search Engines Social Nets Chat

Monolithic Service-Oriented Microservices MBaaS, PWAs,
Serverless, …

Streaming

Distributed Architectures

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Partition
& Scale

Better scalability in applications'
development, deployment, and maintenance

5

Today: Multi-Database Transactions

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Partition
& Scale

5

Today: Multi-Database Transactions

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Partition
& Scale

Each DB handles a portion of
work, aka a subtransaction

5

Today: Multi-Database Transactions

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Multiple subtransactions together form one
global multi-DB transaction

Partition
& Scale

Each DB handles a portion of
work, aka a subtransaction

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

6

Goal: Global Serializability

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

• While helpful for correctness, it is non-trivial to realize.

6

Goal: Global Serializability

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

• While helpful for correctness, it is non-trivial to realize.
• Even if all DBs are locally serializable, global serializability can still be violated.

6

Goal: Global Serializability

Savings DB

$50
Checking DB

$50

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

• While helpful for correctness, it is non-trivial to realize.
• Even if all DBs are locally serializable, global serializability can still be violated.

6

Goal: Global Serializability

Savings DB

$50
Checking DB

$50withdraw($100)

read(c_bal): $50

read(s_bal): $50
if total>=requested:

write(s_bal, -$50)

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

• While helpful for correctness, it is non-trivial to realize.
• Even if all DBs are locally serializable, global serializability can still be violated.

6

Goal: Global Serializability

Savings DB

$50
Checking DB

$50withdraw($100) withdraw($100)

read(c_bal): $50
read(s_bal): $50

read(c_bal): $50
if total>=requested:

write(c_bal, -$50)
read(s_bal): $50
if total>=requested:

write(s_bal, -$50)

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

• While helpful for correctness, it is non-trivial to realize.
• Even if all DBs are locally serializable, global serializability can still be violated.

6

Goal: Global Serializability

Savings DB

$50
Checking DB

$50withdraw($100) withdraw($100)

read(c_bal): $50
read(s_bal): $50

read(c_bal): $50
if total>=requested:

write(c_bal, -$50)
read(s_bal): $50
if total>=requested:

write(s_bal, -$50)

Locally
Serializable Locally

Serializable

• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.

• While helpful for correctness, it is non-trivial to realize.
• Even if all DBs are locally serializable, global serializability can still be violated.

6

Goal: Global Serializability

Savings DB

$50
Checking DB

$50withdraw($100) withdraw($100)

read(c_bal): $50
read(s_bal): $50

read(c_bal): $50
if total>=requested:

write(c_bal, -$50)
read(s_bal): $50
if total>=requested:

write(s_bal, -$50)

-$50-$50

Locally
Serializable Locally

Serializable

Not globally serializable è Negative total

7

State-of-the-Art Approaches

Conservative Protocols
(e.g., forcing conflicts) $$$

Non-
Intrusive

Earlier Work [ICDE '91]*

Local DBs as serializable black boxes
• Force conflicts between subtransactions.
• Large overhead due to limited parallelism (>20-fold

degradation)

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.

7

State-of-the-Art Approaches

Conservative Protocols
(e.g., forcing conflicts) $$$

Non-
Intrusive

Fully App-Level Protocols
(e.g., app-level OCC) $ $

Intrusive
Metadata

Earlier Work [ICDE '91]*

Local DBs as serializable black boxes
• Force conflicts between subtransactions.
• Large overhead due to limited parallelism (>20-fold

degradation)

Recent Work [VLDB '23]**

Local DBs as non-transactional stores
• Full concurrency control in middleware.
• Still large overhead as DB transaction mechanisms are

exercised still.
• Intrusive changes to for additional CC metadata.

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
** Yamada et al. 2023. ScalarDB: Universal Transaction Manager for Polystores. VLDB '23.

7

State-of-the-Art Approaches

Conservative Protocols
(e.g., forcing conflicts) $$$

Non-
Intrusive

Fully App-Level Protocols
(e.g., app-level OCC) $ $

Intrusive
Metadata

Earlier Work [ICDE '91]*

Local DBs as serializable black boxes
• Force conflicts between subtransactions.
• Large overhead due to limited parallelism (>20-fold

degradation)

Recent Work [VLDB '23]**

Local DBs as non-transactional stores
• Full concurrency control in middleware.
• Still large overhead as DB transaction mechanisms are

exercised still.
• Intrusive changes to for additional CC metadata.

Can we achieve high performance
without intrusive changes?

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
** Yamada et al. 2023. ScalarDB: Universal Transaction Manager for Polystores. VLDB '23.

• Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.

8

Our Gray-Box Approach

SSI DB
• Snapshot reads
• First committer/writer wins
• No dangerous structure

S2PL DB • Well-formed schedules
• Strict schedules

• Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.
• Basic Idea: Reuse such properties & add necessary coordination.

8

Our Gray-Box Approach

SSI DB
• Snapshot reads
• First committer/writer wins
• No dangerous structure

S2PL DB • Well-formed schedules
• Strict schedules

Global
Serializability

Additional
Coordination

• Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.
• Basic Idea: Reuse such properties & add necessary coordination.

8

Our Gray-Box Approach

SSI DB
• Snapshot reads
• First committer/writer wins
• No dangerous structure

S2PL DB • Well-formed schedules
• Strict schedules

Global
Serializability

Additional
Coordination

The theory of commitment ordering (CO)[VLDB '92] enables a
locally enforceable condition, allowing lightweight coordination.

*Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serializability
in a Heterogeneous Environment of Multiple Autonomous Resource Mangers Using Atomic Commitment. VLDB '92.

• Sonata works as application-level shims.

9

Sonata Overview

Business Logic
Sonata Shim

• Sonata works as application-level shims.
• No change to apps’ schemas, query statements, the DB drivers, or the DB systems.

9

Sonata Overview

Sonata Shim
Business Logic

Unmodified reads & writes
during execution

• Sonata works as application-level shims.
• No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
• Use 2PC for atomicity and durability.

9

Sonata Overview

Sonata Shim
Business Logic

2PC Coordinator

Unmodified reads & writes
during execution

2PC communications

• Sonata works as application-level shims.
• No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
• Use 2PC for atomicity and durability.
• Take actions only at 2PC prepare time independently at individual DBs.

9

Sonata Overview

Sonata Shim
Business Logic

2PC Coordinator

Unmodified reads & writes
during executionPrepare-time coordination

2PC communications

• Sonata works as application-level shims.
• No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
• Use 2PC for atomicity and durability.
• Take actions only at 2PC prepare time independently at individual DBs.

10

Sonata Overview

Application
Sonata Shim

Business Logic

2PC Coordinator

Sonata Shim
Business Logic

Sonata Shim
Business Logic RPCs RPCs

(Also works with single-server, multi-DB cases)

• The local condition (derived from the CO theory):
In a DB, if 𝑻𝟏 → 𝑻𝟐, then 𝑻𝟏 commits before 𝑻𝟐 prepares.

11

Global Serializability via Local Enforcement

T1

T2

Prepare

Prepare

Commit

Commit

Dependency

• The local condition (derived from the CO theory):
In a DB, if 𝑻𝟏 → 𝑻𝟐, then 𝑻𝟏 commits before 𝑻𝟐 prepares.
• If all DBs satisfies this condition, global serializability holds.

11

Global Serializability via Local Enforcement

T1

T2

Prepare

Prepare

Commit

Commit

Dependency

• The local condition (derived from the CO theory):
In a DB, if 𝑻𝟏 → 𝑻𝟐, then 𝑻𝟏 commits before 𝑻𝟐 prepares.
• If all DBs satisfies this condition, global serializability holds.

11

Global Serializability via Local Enforcement

T1

T2

Prepare

Prepare

Commit

Commit

T1

T2

Prepare

Prepare

Commit

Commit

Dependency

Dependency

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1

Finishing original
transaction logic

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1

T1': read Prepare

(no op)

Finishing original
transaction logic

Per-DB dummy table (transparent to app)

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1 Prepare Commit

T1': read Prepare

T1: write(no op)

Per-DB dummy table (transparent to app)

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1 Prepare Commit

T1': read Prepare

T1: write(no op)

Per-DB dummy table (transparent to app)

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1

T2

Prepare Commit

T1': read

T2': read

Prepare

Prepare

T1: write(no op)

(no op) T2: write

Per-DB dummy table (transparent to app)

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1

T2

Prepare

Prepare

Commit

T1': read

T2': read

Prepare

Prepare

T1: write(no op)

(no op) T2: write

Per-DB dummy table (transparent to app)

• For SSI DBs, we introduce helper transactions.

12

Enforcement in SSI DBs

T1

T2

Prepare

Prepare

Commit

T1': read

T2': read

Prepare

Prepare

T1: write(no op)

(no op) T2: write

SSI dangerous structure!
T2 will be aborted à No violation

Per-DB dummy table (transparent to app)

• For SSI DBs, we introduce helper transactions.

13

Enforcement in SSI DBs

T1

T2

Prepare Commit

T1': read

T2': read

Prepare

Prepare

T1: write(no op)

(no op) T2: write

• For SSI DBs, we introduce helper transactions.

13

Enforcement in SSI DBs

T1

T2

Prepare

Prepare

Commit

T2': read Prepare

T1: write(no op)

(no op) T2: write

No SSI dangerous structure!
T2 won't be aborted à No false positive

• For S2PL DBs, we simply introduce dummy writes.

14

Enforcement in S2PL DBs

T1 Prepare Commit

Write locks

• For S2PL DBs, we simply introduce dummy writes.

14

Enforcement in S2PL DBs

T1 Prepare Commit

Read locks
May release early for

read-only txns

• For S2PL DBs, we simply introduce dummy writes.

15

Enforcement in S2PL DBs

T1 Prepare Commit

Read locks

Write locks

T1: write

Per-DB dummy table
(transparent to app)

• For S2PL DBs, we simply introduce dummy writes.

15

Enforcement in S2PL DBs

T1 Prepare Commit

Read locks

Write locks

T1: write

T2 Prepare Commit

Read locks

Write locks

T2: write
Per-DB dummy table
(transparent to app)

• For S2PL DBs, we simply introduce dummy writes.

15

Enforcement in S2PL DBs

T1 Prepare Commit

Read locks

Write locks

T1: write

T2 Prepare Commit

Read locks

Write locks

T2: write
Per-DB dummy table
(transparent to app)

• For S2PL DBs, we simply introduce dummy writes.

15

Enforcement in S2PL DBs

T1 Prepare Commit

Read locks

Write locks

T1: write

T2 Prepare Commit

Read locks

Write locks

T2: write
Per-DB dummy table
(transparent to app)

Small impact as 2PC prepare
already requires disk writes

• Sonata provably guarantees the local condition, thus global
serializability. (Sec. 4.1)
• The proofs leverage lemmas from [TODS 05]*.

• With PostgreSQL and MySQL, there's no false positive if the DB's
conflict detection is accurate. (Sec. 4.2)
• The analysis depends on DB's implementation details.

16

Correctness and False Positives

* Fekete et al. 2005. Making snapshot isolation serializable. ACM TODS.

• Our prototype is in Java and is based on Apache Seata (25k+ GH ★).

17

Programming with Sonata

• Our prototype is in Java and is based on Apache Seata (25k+ GH ★).
• For existing applications, codebase changes can be as small as
adding a few annotations.

17

Programming with Sonata

• Our prototype is in Java and is based on Apache Seata (25k+ GH ★).
• For existing applications, codebase changes can be as small as
adding a few annotations.

17

Programming with Sonata

JDBC or any JDBC-based library
(We intercept begin/commit calls)

• Our prototype is in Java and is based on Apache Seata (25k+ GH ★).
• For existing applications, codebase changes can be as small as
adding a few annotations.

17

Programming with Sonata

JDBC or any JDBC-based library
(We intercept begin/commit calls)

Any RPC framework able to piggyback transaction ID strings
(We currently intercept HTTP requests)

• We build a multi-DB TPC-C by partitioning by warehouses.
• Either PostgreSQL or MySQL as local DBs.
• Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].

18

Sonata Performance

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

• We build a multi-DB TPC-C by partitioning by warehouses.
• Either PostgreSQL or MySQL as local DBs.
• Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
• Snapshot isolation: Epoxy* [VLDB '23].

18

Sonata Performance

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

• We build a multi-DB TPC-C by partitioning by warehouses.
• Either PostgreSQL or MySQL as local DBs.
• Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
• Snapshot isolation: Epoxy* [VLDB '23].

18

Sonata Performance

0

200

400

600

800

1000

1200

1400

2 4 10 40
Number of Warehouses

2-Server TPC-C Throughput (TPS)

Ticket ScalarDB Epoxy Sonata 2PC

14%–2.4× Better
(vs. Epoxy)3×–4.3× Better

(vs. ScalarDB)

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

70%–11.1× Better
(vs. Ticket)

• We build a multi-DB TPC-C by partitioning by warehouses.
• Either PostgreSQL or MySQL as local DBs.
• Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
• Snapshot isolation: Epoxy* [VLDB '23].

18

Sonata Performance

0

200

400

600

800

1000

1200

1400

2 4 10 40
Number of Warehouses

2-Server TPC-C Throughput (TPS)

Ticket ScalarDB Epoxy Sonata 2PC

14%–2.4× Better
(vs. Epoxy)3×–4.3× Better

(vs. ScalarDB)

~7% Overhead

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

70%–11.1× Better
(vs. Ticket)

• For scalability, at 10 nodes, Sonata (green) achieves 4.65× its 2-
node throughput.

19

Sonata Performance

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10
Number of DB Servers

Multi-Server TPC-C Throughput (TPS)

Ticket ScalarDB Epoxy Sonata 2PC

• Sonata offers global serializability in an efficient, non-intrusive way.

• It reuses DB concurrency control to add lightweight coordination.

• It achieves up to 11.1× higher throughput than prior solutions.

• Check out our paper and code!
• Design details, optimizations, proofs,

& more evaluation results.

20

Summary and Q/A

Paper Code

