VLDB 2025 Research 48: Distributed Transactions Il

Sonata: Multi-Database Transactions
Made Fast and Serializable

Chuzhe Tang', Zhaoguo Wang', Jinyang Li? Haibo Chen’

TInstitute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2New York University

A %\? SHANGHAI JIAO TONG Iy , ; IPADS
///4 ﬁ UNIVERSITY 1§y SO

SSSSSSSSSSSSSSSSSSSSS

Transaction Abstraction

* Transactions are an important programming abstraction.
* Ensures correctness in the presence of concurrent operation and failures.

Large-Scale eb Booking amazon
Applications 4X)PHsBc cHASE O

1‘ Safeguarding Critical Business Logic

. G [
Transactional POIa I 4 CI(:)(LgdeSpanner
Databases Amazon PostgreSQL > E5{ server

Aurora

Transaction Processing

Transaction
Logic

Checking Savings

Begin Transaction
total := s_bal + c_bal
if total >= 100:

c_bal —= 100
Commit Transaction

T2: withdraw(Savings, $100)

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s _bal —= 100
Commit Transaction

Transaction Processing

Transaction Transactional
Logic ||m Database

Checking Savings

Begin Transaction

total := s_bal + c_bal m

if total >= 100: | read(s_bal) |

I
|
1
|
I
|
1
|
I
|
1
|
c_bal -= 100 1
Commit Transaction 1 m
1
|
I
|
1
|
I
|
1
|
I

Concurrent Execution
(e.g., via two-phase locking)

| read(c_bal) |
[XK] waiting..

T2: withdraw(Savings, $100)

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s _bal —= 100
Commit Transaction

A acquired!

| read(c._bal) |
| X]

Transaction Processing

Transaction
Logic

Checking Savings

Begin Transaction
total := s_bal + c_bal
if total >= 100:

c_bal —= 100
Commit Transaction

T2: withdraw(Savings, $100)

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s _bal —= 100
Commit Transaction

[submit 4

Transactional
Database

Concurrent Execution
(e.g., via two-phase locking)

SERETET

| read(s_bal) |

| read(c_bal) |
[T]

waiting..

A acquired!

| read(élbal) |
| X]

| Return 4

Correct
Result

ACID Properties

Isolation: Serializable Execution

v—
v—
o -
) =

Atomicity Consistency Durability

Today: Evolving Applications

. MBaaS, PWAs,

Today: Evolving Applications

. MBaaS, PWAs,
. __/
"

Distributed Architectures

Today: Evolving Applications

. MBaaS, PWAs,
. 4
"

Distributed Architectures

dh
Monolithic Service Node 1 Service Node 2 Service Node 3
App Server }o (e.g., cart) (e.g., order) (e.g., inventory)

it =

Partition ‘ |

& Scale

Today: Evolving Applications

. MBaaS, PWAs,
. __/
"

Distributed Architectures

vt

Monolithic
App Server

H

N

Partition
& Scale

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Better scalability in applications’

development, deployment, and maintenance

Today: Multi-Database Transactions

vt

Monolithic
App Server

7°

H

=)

Partition
& Scale

Service Node 1
(e.g., cart)

vt

1 .T_ _

H

Service Node 2
(e.g., order)

__1. .T__

H

Service Node 3
(e.g., inventory)

H

Today: Multi-Database Transactions

vt

Monolithic
App Server

7°

H

=)

Partition
& Scale

Service Node 1

(e.g., cart)

Each DB handles a portion of
work, aka a subtransaction

H

T

vt

Service Node 2
(e.g., order)

H

.__________1.1__

Service Node 3
(e.g., inventory)

H

Today: Multi-Database Transactions

vt

Monolithic
App Server

7°

H

Service Node 1

(e.g., cart)

=)

& Scale

H

T

Partition :‘

Each DB handles a portion of
work, aka a subtransaction

vt

Service Node 2
(e.g., order)

H

.__________1.1__

Service Node 3
(e.g., inventory)

H

Multiple subtransactions together form one

global multi-DB transaction

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
* We use "global"” to distinguish from the serializability of individual local DBs.

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
* We use "global"” to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
« We use "global" to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.
* Evenif all DBs are locally serializable, global serializability can still be violated.

Checking DB Savings DB
$50 $50

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
« We use "global" to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.
* Evenif all DBs are locally serializable, global serializability can still be violated.

Checking DB Savings DB

citrarawtsion) (D
\

pN read(c_bal): $50 ~~

\ read(s_bal): $50
*» if total>=requested:
write(s_bal, -$50)

.

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
« We use "global" to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.
* Evenif all DBs are locally serializable, global serializability can still be violated.

Checking DB Savings DB
withdraw($100) m @ withdraw($100)
\ 1
"~ read(c_bal): $50 -~ A
| Sy--- read(s_bal): $50 4~
s\
read(c_bal): $50 - |
if totals>=requested: [« % | read(s_bal): $50
write(c_bal, -$50) “» if total>=requested:

l write(s_bal, -$50)

.

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
« We use "global" to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.
* Evenif all DBs are locally serializable, global serializability can still be violated.

withdraw($100)

Locally

Serializable

Checking DB

read(c_bal): $50

Savings DB

I@l

withdraw($100)

/

read(s_bal): $50

4’,

read(c_bal): $50
if total>=requested:
write(c_bal, -$50)

.-

|

read(s_bal): $50
if total>=requested:
write(s_bal, -$50)

Locally
Serializable

.

Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
« We use "global" to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.
* Evenif all DBs are locally serializable, global serializability can still be violated.

Checking DB Savings DB
withdraw($100) m @ withdraw($100)
\]
"~ read(c_bal): $50 -~ A
| Sy--- read(s_bal): $50 <
Locally d(c_bal): $50 . I
. . read(c_bal): 7
Serializable if totals>=requested: [« % | read(s_bal): $50 L?c_a"y
write(c_bal, -$50) | if totals=requested: Serializable
l write(s_bal, -$50)
50
A\ J
Y

Not globally serializable = Negative total

State-of-the-Art Approaches

Earlier Work [ICDE '91]"

Local DBs as serializable black boxes

* Force conflicts between subtransactions.
* Large overhead due to limited parallelism (>20-fold
degradation)

Conservative Protocols
(e.g., forcing conflicts) $ $ $

~ —~ Non-
- - - Intrusive

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.

State-of-the-Art Approaches

Earlier Work [ICDE '91]" Recent Work [VLDB '23]™

Local DBs as serializable black boxes Local DBs as non-transactional stores
* Force conflicts between subtransactions. * Full concurrency control in middleware.
» Large overhead due to limited parallelism (>20-fold - Still large overhead as DB transaction mechanisms are
degradation) exercised still.

* Intrusive changes to for additional CC metadata.

Conservative Protocols $ $ $ Fully App-Level Protocols
(e.g., forcing conflicts) (e.g., app-level OCC)
—~ —~ — Non' Intrusive
- - - Intrusive Metadata

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
** Yamada et al. 2023. ScalarDB: Universal Transaction Manager for Polystores. VLDB '23.

State-of-the-Art Approaches

Earlier Work [ICDE '91]" Recent Work [VLDB '23]™

Local DBs as serializable black boxes Local DBs as non-transactional stores
* Force conflicts between subtransactions. * Full concurrency control in middleware.
» Large overhead due to limited parallelism (>20-fold - Still large overhead as DB transaction mechanisms are
degradation) exercised still.

* Intrusive changes to for additional CC metadata.

Conservative Protocols $ $ $ Fully App-Level Protocols
(e.g., forcing conflicts) (e.g., app-level OCC)

Intrusive
Metadata

~— — Non-

—~
- - - Intrusive

Can we achieve high performance
without intrusive changes?

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
** Yamada et al. 2023. ScalarDB: Universal Transaction Manager for Polystores. VLDB '23.

Our Gray-Box Approach

* Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.

* Snapshot reads
SSIDB - First committer/writer wins
—_— » No dangerous structure

S2PLDB | = ° ngl-formed schedules
o Strict schedules

e

Our Gray-Box Approach

* Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.

- Basic Idea: Reuse such properties & add necessary coordination.

* Snapshot reads
SSIDB | ™ . First committer/writer wins

—_— » No dangerous structure

————
I ——e

S2PLDB | = ° ngl-formed schedules
o Strict schedules

Additional ‘ Global
Coordination Serializability

e

Our Gray-Box Approach

* Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.

- Basic Idea: Reuse such properties & add necessary coordination.

5SS/ DR - * Snapshot reads
* First committer/writer wins . e
— e No dangerous structure Addltlonal ‘ GIObaI
—] Coordination Serializability
S2PLDB | = » Well-formed schedules
» Strict schedules ‘

The theory of commitment ordering (CO)[VLDB '92] enables a
locally enforceable condition, allowing lightweight coordination.

*Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serializability
in a Heterogeneous Environment of Multiple Autonomous Resource Mangers Using Atomic Commitment. VLDB '92.

Sonata Overview

« Sonata works as application-level shims.

‘ Business Logic \

Sonata Overview

« Sonata works as application-level shims.
* No change to apps’ schemas, query statements, the DB drivers, or the DB systems.

Business Logic

B Unmodified rgads & writes
during execution

Sonata Overview

« Sonata works as application-level shims.
* No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
« Use 2PC for atomicity and durability.

Business Logic

B Unmodified rgads & writes
during execution

2PC communications <—

2PC Coordinator

Sonata Overview

« Sonata works as application-level shims.
* No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
« Use 2PC for atomicity and durability.
« Take actions only at 2PC prepare time independently at individual DBs.

Business Logic

B ;Jnmodified rﬁads & writes
. L uring execution
Prepare-time coordination < 9

2PC communications <—

2PC Coordinator

Sonata Overview

« Sonata works as application-level shims.
* No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
« Use 2PC for atomicity and durability.
« Take actions only at 2PC prepare time independently at individual DBs.

Business Logic Business Logic

Business Logic

2PC Coordinator

(Also works with single-server, multi-DB cases)

Global Serializability via Local Enforcement

* The local condition (derived from the CO theory):
InaDB, if T{ —» T,, then T{ commits before T, prepares.

T, Prepare Commit

Dependency g
\ 1 1

T, Prepare Commit

Global Serializability via Local Enforcement

* The local condition (derived from the CO theory):
InaDB, if T{ —» T,, then T{ commits before T, prepares.

« If all DBs satisfies this condition, global serializability holds.

T, Prepare Commit

Dependency g
\ 1

T, Prepare Commit

Global Serializability via Local Enforcement

* The local condition (derived from the CO theory):

InaDB, if T{ —» T,, then T{ commits before T, prepares.
« If all DBs satisfies this condition, global serializability holds.

T, Prepare

Commit

Dependency
\

=

T,

Prepare Commit

T, Prepare

Commit i

Deépendency
\

-

T,

Prepare

Commit

v

X

11

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

Finishing original
transaction logic

Ty

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

Finishing original
transaction logic

\

———————————
-
—‘——
-
-
-
L

T,

Per-DB dummy table (transparent to app)

12

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

- Per-DB dummy table (transparent to app)

1
Prepare Commit

12

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

T.:read | Prepare Per-DB dummy table (transparent to app)

-
=
=~
-~
-
-
-

-
-
—==)

T, (no op) T,: write Prepare Commit

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

T.:read | Prepare Per-DB dummy table (transparent to app)

-
=
=~
-~
-
-
-

-
-
—==)

T, (no op) T,: write Prepare Commit

T, (no op) T,: write

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

T.:read | Prepare Per-DB dummy table (transparent to app)

-
=
=~
-~
-
-
-

-
-
—==)

T, (no op) T,: write Prepare Commit

T, (no op) T,: write Prepare

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

| T,":read I Prepare
— -

Per-DB dummy table (transparent to app)

—_—y _~_ — _ . _
~L =
| T, (no op) T,: write I Prepare Commit
e
I T, (no op) T,: write I Prepare

SSI dangerous structure!
T2 will be aborted = No violation

12

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

T .yl
~_~

=

—

LT

T,: write I Prepare

Commit

=)

(no op)

T,: write I

13

Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

(no op)

T,: write

Prepare

Commit

T,

(no op)

T,: write

Prepare

No SSI dangerous structure!
T2 won't be aborted = No false positive

13

Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

B Write locks

T, Prepare Commit

Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

May release early for
A Read locks read-only txns

T, Prepare Commit

Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

B Read locks
B Write locks

T, T,: write Prepare Commit

Per-DB dummy table
(transparent to app)

Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

B Read locks
B Write locks

Ty

T,: write

Prepare

Commit

Per-DB dummy table
(transparent to app)

B Read locks
B Write locks

T,

T,: write

Prepare

Commit

15

Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

B Read locks
B Write locks
T, T,: write Prepare Commit
i .
! i
1
1
B Read locks
f Write locks

Per-DB dummy table
(transparent to app)

v/

T,

T,: write

Prepare

Commit

15

Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

B Read locks
B Write locks

Ty

T,: write

Prepare

Commit

Per-DB dummy table
(transparent to app)

B Read locks
B Write locks

v/

T,

T,: write

Prepare

Commit

e

Small impact as 2PC prepare
already requires disk writes

15

Correctness and False Positives

« Sonata provably guarantees the local condition, thus global
serializability. (Sec. 4.1)

* The proofs leverage lemmas from [TODS 05]*.

« With PostgreSQL and MySQL, there's no false positive if the DB's
conflict detection is accurate. (Sec. 4.2)

* The analysis depends on DB's implementation details.

* Fekete et al. 2005. Making snapshot isolation serializable. ACM TODS.

16

Programming with Sonata

* Our prototype is in Java and is based on Apache Seata (25k+ GH *).

17

Programming with Sonata

* Our prototype is in Java and is based on Apache Seata (25k+ GH *).

* For existing applications, codebase changes can be as small as
adding a few annotations.

@GlobalTransactional

public void workflow() {

jdbcClient.sql("Select ...").query();

restClient.post().uri(uri: "/api").retrieve().toBodilessEntity();

17

Programming with Sonata

* Our prototype is in Java and is based on Apache Seata (25k+ GH *).

* For existing applications, codebase changes can be as small as
adding a few annotations.

@GlobalTransactional
public void workflow() {

JDBC or any JDBC-based library

jdbcClient.sql("Select ...").query(); ——> , ,)
(We intercept begin/commit calls)

restClient.post().uri(uri: "/api").retrieve().toBodilessEntity();

17

Programming with Sonata

* Our prototype is in Java and is based on Apache Seata (25k+ GH *).

* For existing applications, codebase changes can be as small as
adding a few annotations.

@GlobalTransactional
public void workflow() {

JDBC or any JDBC-based library
(We intercept begin/commit calls)

jdbcClient.sql("Select ...").query(); ——>
restClient.post().uri(uri: "/api").retrieve().toBodilessEntity();

Any RPC framework able to piggyback transaction ID strings
(We currently intercept HT TP requests)

17

Sonata Performance

* We build a multi-DB TPC-C by partitioning by warehouses.
* Either PostgreSQL or MySQL as local DBs.
* Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

18

Sonata Performance

* We build a multi-DB TPC-C by partitioning by warehouses.
* Either PostgreSQL or MySQL as local DBs.
 Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
* Snapshot isolation: Epoxy” [VLDB '23].

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

18

Sonata Performance

* We build a multi-DB TPC-C by partitioning by warehouses.
* Either PostgreSQL or MySQL as local DBs.
 Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
* Snapshot isolation: Epoxy” [VLDB '23].

2-Server TPC-C Throughput (TPS) 14%—2.4x% Better

1400 3x-4.3x Better (vs. Epoxy)
1200 70%-11.1% Better (vs. ScalarDB)
1000 (vs. Ticket)
800
600
400 I
- _ll L

A []

2 4

Number of Warehouses

m Ticket mScalarDB mEpoxy mSonata m2PC

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

18

Sonata Performance

* We build a multi-DB TPC-C by partitioning by warehouses.
* Either PostgreSQL or MySQL as local DBs.
 Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
* Snapshot isolation: Epoxy” [VLDB '23].

2-Server TPC-C Throughput (TPS) 14%—-2.4% Better

1400

3x-4.3x Better (vs. Epoxy)

1200 70%-11.1x Better (vs. ScalarDB)
1000 (vs. Ticket)
800
s00 ~7% Overhead
400 (; __-) I
- 1N .11 & | _

0 []

) 4 40

Number of Warehouses

m Ticket mScalarDB mEpoxy mSonata m2PC

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.

18

Sonata Performance

* For scalability, at 10 nodes, Sonata (green) achieves 4.65 x its 2-
node throughput.

Multi-Server TPC-C Throughput (TPS)

6000
5000
4000
3000

2000

e —
1000 —

0 & —— — - —e

2 4 6 8 10

Number of DB Servers

—e—Ticket ScalarDB —e—Epoxy «@mwSonata —e—2PC

Summary and Q/A

« Sonata offers global serializability in an efficient, non-intrusive way.

* It reuses DB concurrency control to add lightweight coordination.

* It achieves up to 11.1x higher throughput than prior solutions.

* Check out our paper and code! o O
« Design details, optimizations, proofs, l.l I ||; Y |:' '.|..|| |
& more evaluation results. s -. -'ul '|'

Paper

@"l. .|-"E)

(:] ||m “JJ.

Code

20

