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Transaction Abstraction

* Transactions are an important programming abstraction.
* Ensures correctness in the presence of concurrent operation and failures.
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Transaction Processing

Transaction
Logic

Checking Savings

Begin Transaction
total := s_bal + c_bal
if total >= 100:

c_bal —= 100
Commit Transaction

T2: withdraw(Savings, $100)

Begin Transaction
total := c_bal + s_bal
if total >= 100:

s _bal —= 100
Commit Transaction
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Concurrent Execution
(e.g., via two-phase locking)
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Goal: Global Serializability

* Global serializability means serializable multi-DB transactions.
« We use "global" to distinguish from the serializability of individual local DBs.

* While helpful for correctness, it is non-trivial to realize.
* Evenif all DBs are locally serializable, global serializability can still be violated.
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State-of-the-Art Approaches

Earlier Work [ICDE '91]"

Local DBs as serializable black boxes

* Force conflicts between subtransactions.
* Large overhead due to limited parallelism (>20-fold
degradation)

Conservative Protocols
(e.g., forcing conflicts) $ $ $
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* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
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Can we achieve high performance
without intrusive changes?

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
** Yamada et al. 2023. ScalarDB: Universal Transaction Manager for Polystores. VLDB '23.
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Our Gray-Box Approach

* Observation: Dominant CC families in mainstream DBs, SSI & S2PL,
offer useful common properties.

- Basic Idea: Reuse such properties & add necessary coordination.

5SS/ DR - * Snapshot reads
* First committer/writer wins . e
— e No dangerous structure Addltlonal ‘ GIObaI
—] Coordination Serializability
S2PLDB | = » Well-formed schedules
» Strict schedules ‘

The theory of commitment ordering (CO)[VLDB '92] enables a
locally enforceable condition, allowing lightweight coordination.

*Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serializability
in a Heterogeneous Environment of Multiple Autonomous Resource Mangers Using Atomic Commitment. VLDB '92.
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Sonata Overview

« Sonata works as application-level shims.
* No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
« Use 2PC for atomicity and durability.
« Take actions only at 2PC prepare time independently at individual DBs.

Business Logic Business Logic

Business Logic

2PC Coordinator

(Also works with single-server, multi-DB cases)
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Global Serializability via Local Enforcement

* The local condition (derived from the CO theory):

InaDB, if T{ —» T,, then T{ commits before T, prepares.
« If all DBs satisfies this condition, global serializability holds.
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Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

| T,":read I Prepare
— -

Per-DB dummy table (transparent to app)
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T2 will be aborted = No violation

12



Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.
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Enforcement in SSI DBs

* For SSI DBs, we introduce helper transactions.

(no op)

T,: write

Prepare

Commit

T,

(no op)

T,: write

Prepare

No SSI dangerous structure!
T2 won't be aborted = No false positive
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Enforcement in S2PL DBs

* For S2PL DBs, we simply introduce dummy writes.

B Read locks
B Write locks
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T,: write

Prepare

Commit

Per-DB dummy table
(transparent to app)

B Read locks
B Write locks
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T,: write

Prepare
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e

Small impact as 2PC prepare
already requires disk writes
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Correctness and False Positives

« Sonata provably guarantees the local condition, thus global
serializability. (Sec. 4.1)

* The proofs leverage lemmas from [TODS 05]*.

« With PostgreSQL and MySQL, there's no false positive if the DB's
conflict detection is accurate. (Sec. 4.2)

* The analysis depends on DB's implementation details.

* Fekete et al. 2005. Making snapshot isolation serializable. ACM TODS.
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Programming with Sonata

* Our prototype is in Java and is based on Apache Seata (25k+ GH *).

* For existing applications, codebase changes can be as small as
adding a few annotations.

@GlobalTransactional
public void workflow() {

JDBC or any JDBC-based library
(We intercept begin/commit calls)

jdbcClient.sql("Select ...").query(); ——>
restClient.post().uri( uri: "/api").retrieve().toBodilessEntity();

Any RPC framework able to piggyback transaction ID strings
(We currently intercept HT TP requests)
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Sonata Performance

* We build a multi-DB TPC-C by partitioning by warehouses.
* Either PostgreSQL or MySQL as local DBs.
* Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.
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* We build a multi-DB TPC-C by partitioning by warehouses.
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* Snapshot isolation: Epoxy” [VLDB '23].

2-Server TPC-C Throughput (TPS) 14%—-2.4% Better

1400

3x-4.3x Better (vs. Epoxy)

1200 70%-11.1x Better (vs. ScalarDB)
1000 (vs. Ticket)
800
s00 ~7% Overhead
400 (; __-) I
- 1N .11 & | _

0 [ ]

) 4 40

Number of Warehouses

m Ticket mScalarDB mEpoxy mSonata m2PC

* Kraft et al. 2023. Epoxy: ACID Transactions across Diverse Data Stores. VLDB '23.
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Sonata Performance

* For scalability, at 10 nodes, Sonata (green) achieves 4.65 x its 2-
node throughput.
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Summary and Q/A

« Sonata offers global serializability in an efficient, non-intrusive way.

* It reuses DB concurrency control to add lightweight coordination.

* It achieves up to 11.1x higher throughput than prior solutions.

* Check out our paper and code! o O
« Design details, optimizations, proofs, l.l I ||; Y |:' '.|..|| |
& more evaluation results. s -. -'ul '|'
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