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• Transactions are an important programming abstraction.
• Ensures correctness in the presence of concurrent operation and failures.

Transaction Abstraction

Large-Scale
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Safeguarding Critical Business Logic
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if total >= 100:

c_bal -= 100
Commit Transaction
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Isolation: Serializable Execution
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ACID PropertiesConcurrent Execution
(e.g., via two-phase locking)
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Atomicity Consistency Durability
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Distributed Architectures

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Partition
& Scale

Better scalability in applications'
development, deployment, and maintenance
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Today: Multi-Database Transactions

Monolithic
App Server

Service Node 1
(e.g., cart)

Service Node 2
(e.g., order)

Service Node 3
(e.g., inventory)

Multiple subtransactions together form one 
global multi-DB transaction

Partition
& Scale

Each DB handles a portion of 
work, aka a subtransaction



• Global serializability means serializable multi-DB transactions.
• We use "global" to distinguish from the serializability of individual local DBs.
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Goal: Global Serializability

Savings DB

$50
Checking DB

$50withdraw($100) withdraw($100)

read(c_bal): $50
read(s_bal): $50

read(c_bal): $50
if total>=requested:

write(c_bal, -$50)
read(s_bal): $50
if total>=requested:
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-$50-$50

Locally 
Serializable Locally 

Serializable

Not globally serializable è Negative total



7

State-of-the-Art Approaches

Conservative Protocols
(e.g., forcing conflicts) $$$

Non-
Intrusive

Earlier Work [ICDE '91]*

Local DBs as serializable black boxes
• Force conflicts between subtransactions.
• Large overhead due to limited parallelism (>20-fold 

degradation)

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
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Conservative Protocols
(e.g., forcing conflicts) $$$

Non-
Intrusive

Fully App-Level Protocols
(e.g., app-level OCC) $ $

Intrusive
Metadata

Earlier Work [ICDE '91]*

Local DBs as serializable black boxes
• Force conflicts between subtransactions.
• Large overhead due to limited parallelism (>20-fold 

degradation)

Recent Work [VLDB '23]**

Local DBs as non-transactional stores
• Full concurrency control in middleware.
• Still large overhead as DB transaction mechanisms are 

exercised still.
• Intrusive changes to for additional CC metadata.

Can we achieve high performance
without intrusive changes?

* Georgakopoulos et al. 1991. On Serializability of Multidatabase Transactions Through Forced Local Conflicts. ICDE '91.
** Yamada et al. 2023. ScalarDB: Universal Transaction Manager for Polystores. VLDB '23.
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Our Gray-Box Approach

SSI DB
• Snapshot reads
• First committer/writer wins
• No dangerous structure

S2PL DB • Well-formed schedules
• Strict schedules

Global
Serializability

Additional
Coordination

The theory of commitment ordering (CO)[VLDB '92] enables a
locally enforceable condition, allowing lightweight coordination.

*Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serializability
in a Heterogeneous Environment of Multiple Autonomous Resource Mangers Using Atomic Commitment. VLDB '92.
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• Sonata works as application-level shims.
• No change to apps’ schemas, query statements, the DB drivers, or the DB systems.
• Use 2PC for atomicity and durability.
• Take actions only at 2PC prepare time independently at individual DBs.
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Sonata Overview

Application
Sonata Shim

Business Logic

2PC Coordinator

Sonata Shim
Business Logic

Sonata Shim
Business Logic RPCs RPCs

(Also works with single-server, multi-DB cases)
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• For SSI DBs, we introduce helper transactions.
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Enforcement in SSI DBs

T1

T2

Prepare

Prepare

Commit

T2': read Prepare

T1: write(no op)

(no op) T2: write

No SSI dangerous structure!
T2 won't be aborted à No false positive
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• For S2PL DBs, we simply introduce dummy writes.

15

Enforcement in S2PL DBs

T1 Prepare Commit

Read locks

Write locks

T1: write

T2 Prepare Commit

Read locks

Write locks

T2: write
Per-DB dummy table
(transparent to app)

Small impact as 2PC prepare
already requires disk writes



• Sonata provably guarantees the local condition, thus global 
serializability. (Sec. 4.1)
• The proofs leverage lemmas from [TODS 05]*.

• With PostgreSQL and MySQL, there's no false positive if the DB's 
conflict detection is accurate. (Sec. 4.2)
• The analysis depends on DB's implementation details.

16

Correctness and False Positives

* Fekete et al. 2005. Making snapshot isolation serializable. ACM TODS.
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Programming with Sonata

JDBC or any JDBC-based library
(We intercept begin/commit calls)

Any RPC framework able to piggyback transaction ID strings
(We currently intercept HTTP requests)



• We build a multi-DB TPC-C by partitioning by warehouses.
• Either PostgreSQL or MySQL as local DBs.
• Global serializability: ScalarDB [VLDB '23] & Ticket [ICDE '91].
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• For scalability, at 10 nodes, Sonata (green) achieves 4.65× its 2-
node throughput.
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• Sonata offers global serializability in an efficient, non-intrusive way.

• It reuses DB concurrency control to add lightweight coordination.

• It achieves up to 11.1× higher throughput than prior solutions.

• Check out our paper and code!
• Design details, optimizations, proofs,

& more evaluation results.
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Summary and Q/A

Paper Code


